1 Proving NP-completeness

In general, proving \(NP \)-completeness of a language \(L \) by reduction consists of the following steps.

1. Show that the language \(A \) is in \(NP \)
2. Choose an \(NP \)-complete \(B \) language from which the reduction will go, that is, \(B \leq_p A \).
3. Describe the reduction function \(f \)
4. Argue that if an instance \(x \) was in \(B \), then \(f(x) \in A \).
5. Argue that if \(f(x) \in A \) then \(x \in B \).
6. Briefly explain why is \(f \) computable in polytime.

Usually the bulk of the proof is 2a, we often skip 1 and 1d when they are trivial.

2 Some examples of NP-completeness reductions

2.1 Hamiltonicity problems

Definition 1. A Hamiltonian cycle (path, s-t path) is a simple cycle (path, path from vertex \(s \) to vertex \(t \)) in an undirected graph which touches all vertices in the graph. The languages HamCycle, HamPath and stHamPath are sets of graphs which have the corresponding property (e.g., a hamiltonian cycle).

We omit the proof that HamPath is \(NP \)-complete (see Sipser’s book page 286). Instead, we will do a much simpler reduction. Assuming that we know that HamCycle is \(NP \)-complete, we will prove that stHamPath is \(NP \)-complete. It is easy to see that all problems in this class are in \(NP \): given a sequence of \(n \) vertices one can verify in polynomial time that no vertex repeats in the sequence and there is an edge between every pair of subsequent vertices.

Lemma 2. HamCycle \(\leq_p \) stHamPath

Proof. Let \(f(G) = (G', s, t) \) be the reduction function. Define it as follows. Choose an arbitrary vertex of \(G \) (say, labelled \(v \)). Suppose that there is no vertex in \(G \) called \(v' \). Now, set vertices of \(G' \) to be \(V' = V \cup \{v'\} \), and edges of \(G' \) to be \(E' = E \cup \{(u, v') \mid (u, v) \in E\} \).

That is, the new vertex \(v' \) is a “copy” of \(v \) in a sense that it is connected to exactly the same vertices as \(v \). Then, set \(s = v \) and \(t = v' \).
Now, suppose that there is a Hamiltonian cycle in G. Without loss of generality, suppose that it starts with v, so it is $v = v_1, v_2, \ldots, v_n, v$. Here, it would be more correct to use numbering of the form v_{i_1}, \ldots, v_{i_n}, but for simplicity we assume that the vertices are renumbered. Now, replacing the final v with v' we get a Hamiltonian path from $s = v$ to $t = v'$ in G'.

For the other direction, suppose that G' has a Hamiltonian path starting from s and ending in t. Then since s and t correspond to the same vertex in G, this path will be a Hamiltonian cycle in G.

Lastly, since f does no computation and only adds 1 vertex and at most n edges the reduction is polynomial-time.

Note that this reduction would not work if we were reducing to HamPath rather than stHamPath. Then the part 1c of the proof would break: it might be possible to have a Hamiltonian path in G' but not a Hamiltonian cycle in G if we allow v and v' to be in different parts of the path.

Definition 3 (Travelling salesperson problem). For TSP, consider an undirected graph in which all possible edges $\{u, v\}$ (for $u \neq v$) are present, and for which we have a nonnegative integer valued cost function c on the edges. A tour is a simple cycle containing all the vertices (exactly once) – that is, a Hamiltonian cycle – and the cost of the tour is the sum of the costs of the edges in the cycle.

TSP Instance:
$\langle G, c, B \rangle$ where G is an undirected graph with all edges present, c is a nonnegative integer cost function on the edges of G, and B is a nonnegative integer.

Acceptance Condition:
Accept if G has a tour of cost $\leq B$.

Theorem 4. TSP is NP-Complete.

Proof. It is easy to see that TSP \in NP.

We will show that HamCycle \leq_p TSP.

Let α be an input for HamCycle, and as above assume that α is an instance of HamCycle, $\alpha = \langle G \rangle$, $G = (V, E)$. Let
$f(\alpha) = \langle G', c, 0 \rangle$ where:

$G' = (V, E')$ where E' consists of all possible edges $\{u, v\}$;

For each edge $e \in E'$, $c(e) = 0$ if $e \in E$, and $c(e) = 1$ if $e \notin E$.

It is easy to see that G has a Hamiltonian cycle $\iff G'$ has a tour of cost ≤ 0. \qed

Note that the above proof implies that TSP is NP-complete, even if we restrict the edge costs to be in $\{0, 1\}$.

2
2.2 SubsetSum and Partition

SubsetSum

Instance:
\(\langle a_1, a_2, \cdots, a_m, t \rangle\) where \(t\) and all the \(a_i\) are nonnegative integers presented in binary.

Acceptance Condition:
Accept if there is an \(S \subseteq \{1, \cdots, m\}\) such that \(\sum_{i \in S} a_i = t\).

We will postpone the proof that SubsetSum is NP-complete until the next lecture. For now, we will give a simpler reduction from SubsetSum to a related problem Partition.

\textbf{PARTITION}

Instance:
\(\langle a_1, a_2, \cdots, a_m \rangle\) where all the \(a_i\) are nonnegative integers presented in binary.

Acceptance Condition:
Accept if there is an \(S \subseteq \{1, \cdots, m\}\) such that \(\sum_{i \in S} a_i = \sum_{j \notin S} a_j\).

\textbf{Theorem 5.} \textit{PARTITION} is NP-Complete.

\textit{Proof.} It is easy to see that PARTITION \(\in\) NP.
We will prove SubsetSum \(\leq_p\) PARTITION. Let \(x\) be an input for SubsetSum. Assume that \(x\) is an Instance of SubsetSum, otherwise we can just let \(f(x)\) be some string not in PARTITION. So \(x = \langle a_1, a_2, \cdots, a_m, t \rangle\) where \(t\) and all the \(a_i\) are nonnegative integers presented in binary. Let \(a = \sum_{1 \leq i \leq m} a_i\).

\textbf{Case 1:} \(2t \geq a\).
Let \(f(x) = \langle a_1, a_2, \cdots, a_m, a_{m+1} \rangle\) where \(a_{m+1} = 2t - a\). It is clear that \(f\) is computable in polynomial time. We wish to show that \(x \in \text{SubsetSum} \iff f(x) \in \text{PARTITION}\).

To prove \(\Rightarrow\), say that \(x \in \text{SubsetSum}\). Let \(S \subseteq \{1, \cdots, m\}\) such that \(\sum_{i \in S} a_i = t\). Letting \(T = \{1, \cdots, m\} - S\), we have \(\sum_{j \in T} a_i = a - t\). Letting \(T' = \{1, \cdots, m+1\} - S\), we have \(\sum_{j \in T'} a_i = (a - t) + a_{m+1} = (a - t) + (2t - a) = t = \sum_{i \in S} a_i\). So \(f(x) \in \text{PARTITION}\).

To prove \(\Leftarrow\), say that \(f(x) \in \text{PARTITION}\). So there exists \(S \subseteq \{1, \cdots, m+1\}\) such that letting \(T = \{1, \cdots, m+1\} - S\), we have \(\sum_{i \in S} a_i = \sum_{j \in T} a_j = [a + (2t - a)]/2 = t\). Without loss of generality, assume \(m+1 \in T\). So we have \(S \subseteq \{1, \cdots, m\}\) and \(\sum_{i \in S} a_i = t\), so \(x \in \text{SubsetSum}\).

\textbf{Case 2:} \(2t \leq a\). You can check that adding \(a_{m+1} = a - 2t\) works. \(\square\)

\textbf{Warning:} Students often make the following serious mistake when trying to prove that \(L_1 \leq_p L_2\). When given a string \(x\), we are supposed to show how to construct (in polynomial time) a string \(f(x)\) such that \(x \in L_1\) if and only if \(f(x) \in L_2\). We are supposed to construct \(f(x)\) without knowing whether or not \(x \in L_1\); indeed, this is the whole point. However, often students assume that \(x \in L_1\), and even assume that we are given a certificate showing that \(x \in L_1\); this is completely missing the point.