
CS 6743 Lecture 10 Fall 2007

1 Proving NP-completeness

In general, proving NP -completeness of a language L by reduction consists of the following
steps.

1. Show that the language A is in NP

2. Choose an NP-complete B language from which the reduction will go, that is, B ≤p A.

3. Describe the reduction function f

4. Argue that if an instance x was in B, then f(x) ∈ A.

5. Argue that if f(x) ∈ A then x ∈ B.

6. Briefly explain why is f computable in polytime.

Usually the bulk of the proof is 2a, we often skip 1 and 1d when they are trivial.

2 Some examples of NP-completeness reductions

2.1 Hamiltonicity problems

Definition 1. A Hamiltonian cycle (path, s-t path) is a simple cycle (path, path from vertex
s to vertex t) in an undirected graph which touches all vertices in the graph. The languages
HamCycle, HamPath and stHamPath are sets of graphs which have the corresponding prop-
erty (e.g., a hamiltonian cycle).

We omit the proof that HamPath is NP-complete (see Sipser’s book page 286). Instead,
we will do a much simpler reduction. Assuming that we know that HamCycle is NP-complete,
we will prove that stHamPath is NP-complete. It is easy to see that all problems in this class
are in NP: given a sequence of n vertices one can verify in polynomial time that no vertex
repeats in the sequence and there is an edge between every pair of subsequent vertices.

Lemma 2. HamCycle ≤p stHamPath

Proof. Let f(G) = (G′, s, t) be the reduction function. Define it as follows. Choose an
arbitrary vertex of G (say, labelled v). Suppose that there is no vertex in G called v′. Now,
set vertices of G′ to be V ′ = V ∪ {v′}, and edges of G′ to be E ′ = E ∪ {(u, v′) | (u, v) ∈ E}.
That is, the new vertex v′ is a “copy” of v in a sense that it is connected to exactly the same
vertices as v. Then, set s = v and t = v′.

1



Now, suppose that there is a hamiltonian cycle in G. Without loss of generality, suppose
that it starts with v, so it is v = v1, v2, . . . vn, v. Here, it would be more correct to use num-
bering of the form vi1 . . . vin , but for simplicity we assume that the vertices are renumbered.
Now, replacing the final v with v′ we get a hamiltonian path from s = v to t = v′ in G′.

For the other direction, suppose that G′ has a hamiltonian path starting from s and
ending in t. Then since s and t correspond to the same vertex in G, this path will be a
hamiltonian cycle in G.

Lastly, since f does no computation and only adds 1 vertex and at most n edges the
reduction is polynomial-time.

Note that this reduction would not work if we were reducing to HamPath rather than
stHamPath. Then the part 1c of the proof would break: it might be possible to have a
hamiltonian path in G′ but not a ham. cycle in G if we allow v and v′ to be in different
parts of the path.

Definition 3 (Travelling salesperson problem). For TSP, consider an undirected graph
in which all possible edges {u, v} (for u 6= v) are present, and for which we have a nonnegative
integer valued cost function c on the edges. A tour is a simple cycle containing all the vertices
(exactly once) – that is, a Hamiltonian cycle – and the cost of the tour is the sum of the
costs of the edges in the cycle.

TSP
Instance:
〈G, c, B〉 where G is an undirected graph with all edges present , c is a nonnegative integer
cost function on the edges of G, and B is a nonnegative integer.
Acceptance Condition:
Accept if G has a tour of cost ≤ B.

Theorem 4. TSP is NP-Complete.

Proof. It is easy to see that TSP ∈ NP.
We will show that HamCycle ≤p TSP.
Let α be an input for HamCycle, and as above assume that α is an instance of HamCycle,
α = 〈G〉, G = (V, E). Let
f(α) = 〈G′, c, 0〉 where:
G′ = (V, E ′) where E ′ consists of all possible edges {u, v};
for each edge e ∈ E ′, c(e) = 0 if e ∈ E, and c(e) = 1 if e /∈ E.

It is easy to see that G has a Hamiltonian cycle ⇔ G′ has a tour of cost ≤ 0.

Note that the above proof implies that TSP is NP-complete, even if we restrict the edge
costs to be in {0, 1}.
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2.2 SubsetSum and Partition

SubsetSum
Instance:
〈a1, a2, · · · , am, t〉 where t and all the ai are nonnegative integers presented in binary.
Acceptance Condition:
Accept if there is an S ⊆ {1, · · · , m} such that

∑
i∈S ai = t.

We will postpone the proof that SubsetSum is NP-complete until the next lecture. For
now, we will give a simpler reduction from SubsetSum to a related problem Partition.

PARTITION
Instance:
〈a1, a2, · · · , am〉 where all the ai are nonnegative integers presented in binary.
Acceptance Condition:
Accept if there is an S ⊆ {1, · · · , m} such that

∑
i∈S ai =

∑
j /∈S aj.

Theorem 5. PARTITION is NP-Complete.

Proof. It is easy to see that PARTITION ∈ NP.
We will prove SubsetSum ≤p PARTITION. Let x be an input for SubsetSum. Assume
that x is an Instance of SubsetSum, otherwise we can just let f(x) be some string not
in PARTITION. So x = 〈a1, a2, · · · , am, t〉 where t and all the ai are nonnegative integers
presented in binary. Let a =

∑
1≤i≤m ai.

Case 1: 2t ≥ a.
Let f(x) = 〈a1, a2, · · · , am, am+1〉 where am+1 = 2t − a. It is clear that f is computable in
polynomial time. We wish to show that
x ∈ SubsetSum ⇔ f(x) ∈ PARTITION.

To prove ⇒, say that x ∈ SubsetSum. Let S ⊆ {1, · · · , m} such that
∑

i∈S ai = t.
Letting T = {1, · · · , m}− S, we have

∑
j∈T ai = a− t. Letting T ′ = {1, · · · , m + 1}− S, we

have
∑

j∈T ′ ai = (a− t) + am+1 = (a− t) + (2t− a) = t =
∑

i∈S ai. So f(x) ∈ PARTITION.
To prove ⇐, say that f(x) ∈ PARTITION. So there exists S ⊆ {1, · · · , m+1} such that

letting T = {1, · · · , m + 1}−S, we have
∑

i∈S ai =
∑

j∈T aj = [a + (2t− a)]/2 = t. Without
loss of generality, assume m + 1 ∈ T . So we have S ⊆ {1, · · · , m} and

∑
i∈S ai = t, so

x ∈ SubsetSum.
Case 2: 2t ≤ a. You can check that adding am+1 = a− 2t works.

Warning: Students often make the following serious mistake when trying to prove that
L1 ≤p L2. When given a string x, we are supposed to show how to construct (in polynomial
time) a string f(x) such that x ∈ L1 if and only if f(x) ∈ L2. We are supposed to construct
f(x) without knowing whether or not x ∈ L1; indeed, this is the whole point. However, often
students assume that x ∈ L1, and even assume that we are given a certificate showing that
x ∈ L1; this is completely missing the point.
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