Lecture 10

1 Proving NP-completeness

In general, proving NP-completeness of a language L by reduction consists of the following steps.

- 1. Show that the language A is in NP
- 2. Choose an NP-complete B language from which the reduction will go, that is, $B \leq_p A$.
- 3. Describe the reduction function f
- 4. Argue that if an instance x was in B, then $f(x) \in A$.
- 5. Argue that if $f(x) \in A$ then $x \in B$.
- 6. Briefly explain why is f computable in polytime.

Usually the bulk of the proof is 2a, we often skip 1 and 1d when they are trivial.

2 Some examples of NP-completeness reductions

2.1 Hamiltonicity problems

Definition 1. A Hamiltonian cycle (path, s-t path) is a simple cycle (path, path from vertex s to vertex t) in an undirected graph which touches all vertices in the graph. The languages HamCycle, HamPath and stHamPath are sets of graphs which have the corresponding property (e.g., a hamiltonian cycle).

We omit the proof that HamPath is NP-complete (see Sipser's book page 286). Instead, we will do a much simpler reduction. Assuming that we know that HamCycle is NP-complete, we will prove that stHamPath is NP-complete. It is easy to see that all problems in this class are in NP: given a sequence of n vertices one can verify in polynomial time that no vertex repeats in the sequence and there is an edge between every pair of subsequent vertices.

Lemma 2. $HamCycle \leq_p stHamPath$

Proof. Let f(G) = (G', s, t) be the reduction function. Define it as follows. Choose an arbitrary vertex of G (say, labelled v). Suppose that there is no vertex in G called v'. Now, set vertices of G' to be $V' = V \cup \{v'\}$, and edges of G' to be $E' = E \cup \{(u, v') \mid (u, v) \in E\}$. That is, the new vertex v' is a "copy" of v in a sense that it is connected to exactly the same vertices as v. Then, set s = v and t = v'.

Now, suppose that there is a hamiltonian cycle in G. Without loss of generality, suppose that it starts with v, so it is $v = v_1, v_2, \ldots, v_n, v$. Here, it would be more correct to use numbering of the form $v_{i_1} \ldots v_{i_n}$, but for simplicity we assume that the vertices are renumbered. Now, replacing the final v with v' we get a hamiltonian path from s = v to t = v' in G'.

For the other direction, suppose that G' has a hamiltonian path starting from s and ending in t. Then since s and t correspond to the same vertex in G, this path will be a hamiltonian cycle in G.

Lastly, since f does no computation and only adds 1 vertex and at most n edges the reduction is polynomial-time.

Note that this reduction would not work if we were reducing to HamPath rather than stHamPath. Then the part 1c of the proof would break: it might be possible to have a hamiltonian path in G' but not a ham. cycle in G if we allow v and v' to be in different parts of the path.

Definition 3 (Travelling salesperson problem). For TSP, consider an undirected graph in which all possible edges $\{u, v\}$ (for $u \neq v$) are present, and for which we have a nonnegative integer valued cost function c on the edges. A tour is a simple cycle containing all the vertices (exactly once) - that is, a Hamiltonian cycle - and the cost of the tour is the sum of the costs of the edges in the cycle.

TSP

Instance: $\langle G, c, B \rangle$ where G is an undirected graph with all edges present, c is a nonnegative integer cost function on the edges of G, and B is a nonnegative integer. Acceptance Condition: Accept if G has a tour of $cost \leq B$.

Theorem 4. TSP is NP-Complete.

Proof. It is easy to see that $TSP \in NP$. We will show that HamCycle \leq_p TSP. Let α be an input for HamCycle, and as above assume that α is an instance of HamCycle, $\alpha = \langle G \rangle, G = (V, E).$ Let $f(\alpha) = \langle G', c, 0 \rangle$ where: G' = (V, E') where E' consists of all possible edges $\{u, v\}$; for each edge $e \in E'$, c(e) = 0 if $e \in E$, and c(e) = 1 if $e \notin E$.

It is easy to see that G has a Hamiltonian cycle \Leftrightarrow G' has a tour of cost ≤ 0 .

Note that the above proof implies that TSP is **NP**-complete, even if we restrict the edge costs to be in $\{0,1\}$.

2.2 SubsetSum and Partition

SubsetSum

<u>Instance:</u>

 $\langle a_1, a_2, \cdots, a_m, t \rangle$ where t and all the a_i are nonnegative integers presented in binary. Acceptance Condition:

Accept if there is an $S \subseteq \{1, \dots, m\}$ such that $\sum_{i \in S} a_i = t$.

We will postpone the proof that SubsetSum is NP-complete until the next lecture. For now, we will give a simpler reduction from SubsetSum to a related problem Partition.

PARTITION

Instance:

 $\langle a_1, a_2, \cdots, a_m \rangle$ where all the a_i are nonnegative integers presented in binary. Acceptance Condition: Accept if there is an $S \subseteq \{1, \cdots, m\}$ such that $\sum_{i \in S} a_i = \sum_{i \notin S} a_j$.

Theorem 5. *PARTITION is* **NP**-*Complete.*

Proof. It is easy to see that PARTITION \in **NP**.

We will prove SubsetSum \leq_p PARTITION. Let x be an input for SubsetSum. Assume that x is an Instance of SubsetSum, otherwise we can just let f(x) be some string not in PARTITION. So $x = \langle a_1, a_2, \cdots, a_m, t \rangle$ where t and all the a_i are nonnegative integers presented in binary. Let $a = \sum_{1 \leq i \leq m} a_i$.

Case 1: $2t \ge a$.

Let $f(x) = \langle a_1, a_2, \dots, a_m, a_{m+1} \rangle$ where $a_{m+1} = 2t - a$. It is clear that f is computable in polynomial time. We wish to show that

 $x \in \text{SubsetSum} \Leftrightarrow f(x) \in \text{PARTITION}.$

To prove \Rightarrow , say that $x \in$ SubsetSum. Let $S \subseteq \{1, \dots, m\}$ such that $\sum_{i \in S} a_i = t$. Letting $T = \{1, \dots, m\} - S$, we have $\sum_{j \in T} a_i = a - t$. Letting $T' = \{1, \dots, m+1\} - S$, we have $\sum_{j \in T'} a_i = (a - t) + a_{m+1} = (a - t) + (2t - a) = t = \sum_{i \in S} a_i$. So $f(x) \in$ PARTITION.

To prove \Leftarrow , say that $f(x) \in \text{PARTITION}$. So there exists $S \subseteq \{1, \dots, m+1\}$ such that letting $T = \{1, \dots, m+1\} - S$, we have $\sum_{i \in S} a_i = \sum_{j \in T} a_j = [a + (2t - a)]/2 = t$. Without loss of generality, assume $m + 1 \in T$. So we have $S \subseteq \{1, \dots, m\}$ and $\sum_{i \in S} a_i = t$, so $x \in \text{SubsetSum}$.

Case 2: $2t \leq a$. You can check that adding $a_{m+1} = a - 2t$ works.

Warning: Students often make the following serious mistake when trying to prove that $L_1 \leq_p L_2$. When given a string x, we are supposed to show how to construct (in polynomial time) a string f(x) such that $x \in L_1$ if and only if $f(x) \in L_2$. We are supposed to construct f(x) without knowing whether or not $x \in L_1$; indeed, this is the whole point. However, often students assume that $x \in L_1$, and even assume that we are given a certificate showing that $x \in L_1$; this is completely missing the point.