Midterm study sheet for CS3719
Regular languages and finite automata

An alphabet is a finite set of symbols. Set of all finite strings over an alphabet X is denoted ¥*. A
language is a subset of ¥*. Empty string is called € (epsilon).

Regular expressions are built recursively starting from), e and symbols from ¥ and closing under
Union (R U Ry), Concatenation (R; o Ry) and Kleene Star (R* denoting 0 or more repetitions of R)
operations. These three operations are called regular operations.

A Deterministic Finite Automaton (DFA) D is a 5-tuple (@, 3,0, qo, F'), where @ is a finite set of
states, X is the alphabet, § : Q x X — (@ is the transition function, gq is the start state, and F is the
set of accept states. A DFA accepts a string if there exists a sequence of states starting with rg = qq
and ending with r, € F such that Vi,0 < i < n,d(r;,w;) = ri+1. The language of a DFA, denoted
L(D) is the set of all and only strings that D accepts.

A language is called regular iff it is recognized by some DFA.

Theorem: The class of regular languages is closed under union, concatenation and Kleene star
operations.

A non-deterministic finite automaton (NFA) is a 5-tuple (@, X, 0, qo, F'), where Q, 3, ¢y and F
are as in the case of DFA, but the transition function ¢ is 0 : @ x (X U {e}) — P(Q). Here,
P(Q) is the powerset (set of all subsets) of). A non-deterministic finite automaton accepts a
string w = wy ... w,, if there exists a sequence of states rg,...7,, such that ro = qg, r,, € F and
Vi, 0 <i<m,ripy € 0(rs, w;).

Theorem: For every NFA there is a DFA recognizing the same language. The construction sets
states of the DFA to be the powerset of states of NFA, and makes a (single) transition from every set
of states to a set of states accessible from it in one step on a letter following with all states reachable
by (a path of) e-transitions. The start state of the DFA is the set of all states reachable from g by
following possibly multiple e-transitions.

Theorem: A language is recognized by a DFA if and only if it is generated by some regular ex-
pression. In the proof, the construction of DFA from a regular expression follows the closure proofs
and recursive definition of the regular expression. The construction of a regular expression from a
DFA first converts DFA into a Generalized NFA with regular expressions on the transitions, a sin-
gle distinct accept state and transitions (possibly () between every two states. The proof proceeds
inductively eliminating states until only the start and accept states are left.

Lemma The pumping lemma for reqular languages states that for every regular language A there
is a pumping length p such that Vs € A, if |s| > p then s = xyz such that 1) Vi > 0,2y’z € A. 2)
ly| > 0 3) |zy| < p. The proof proceeds by setting p to be the number of states of a DFA recognizing
A, and showing how to eliminate or add the loops. This lemma is used to show that languages such
as {0"1"}, {ww"} and so on are not regular.

Context-free languages and Pushdown automata.

A pushdown automaton (PDA) is a “NFA with a stack”; more formally, a PDA is a 6-tuple (Q, 3, T, 4, qo, F')
where () is the set of states, 2 the input alphabet, I" the stack alphabet, gy the start state, F' is the
set of finite states and the transition function ¢ : @ x (X U {e}) x (U {e}) = P(Q x (T' U {e})).

o A context-free grammar (CFG) is a 4-tuple (V, X, R, S), where V is a finite set of variables, with
S € V the start variable, ¥ is a finite set of terminals (disjoint from the set of variables), and R is
a finite set of rules, with each rule consisting of a variable followed by — > followed by a string of
variables and terminals.

e Let A — w be a rule of the grammar, where w is a string of variables and terminals. Then A can
be replaced in another rule by w: uAv in a body of another rule can be replaced by uwwv (we say
uAv yields vwv,denoted uAv = uwwv). If there is a sequence u = uy, usg, . . . ux = v such that for all i,
1 <i <k, uj = u;y1 then we say that u derives v (denoted v = v.) If G is a context-free grammar,
then the language of G is the set of all strings of terminals that can be generated from the start
variable: £(G) = {w € £*|S = w}. A parse tree of a string is a tree representation of a sequence of
derivations; it is leftmost if at every step the first variable from the left was substituted. A grammar
is called ambiguous if there is a string in a grammar with two different (leftmost) parse trees.

e A language is called a context-free language (CFL) if there exists a CFG generating it.
e Theorem Every regular language is context-free.

e Theorem A language is context-free iff some pushdown automaton recognizes it. The proof of one
direction constructs a PDA from the grammar (by having a middle state with “loops” on rules; loops
consist of as many states as needed to place all symbols in the rule on the stack).

e Lemma The pumping lemma for context-free languages states that for every CFL A there is a
pumping length p such that Vs € A, if |s| > p then s = uvayz such that 1) Vi > 0, uv’zy’z € A. 2)
lvy| > 0 3) |vzy| < p. This lemma is used to show that languages such as {a"b"c"}, {ww} and so on
are not regular.

e Theorem The class of CFLs is not closed under complementation and intersection (although it is
closed under union, Kleene star and concatenation).

e Theorem There are context-free languages not recognized by any deterministic PDA.
Turing machines and decidability.

e A Turing machine is a finite automaton plus an infinite read/write memory (tape). Formally, a
Turing machine is a 6-tuple M = (Q, 3,1, 6, g0, Gaccept Greject). Here, @ is a finite set of states as
before, with three special states go (start state), Qaccept aNd Greject- The last two are called the
halting states, and they cannot be equal. X is a finite input alphabet. I is a tape alphabet which
includes all symbols from ¥ and a special symbol for blank, U. Finally, the transition function is
d:Q.xI' - Q xTI'x{L,R} where L, R mean move left or right one step on the tape. Also know
encoding languages and Turing machines as binary strings.

e Equivalent (not necessarily efficiently) variants of Turing machines: two-way vs. one-way infinite
tape, multi-tape, non-deterministic.

e Church-Turing Thesis Anything computable by an algorithm of any kind (our intuitive notion of
algorithm) is computable by a Turing machine.

e A Turing machine M accepts a string w if there is an accepting computation of M on w, that is,
there is a sequence of configurations (state,non-blank memory,head position) starting from gow and
ending in a configuration containing guccept, With every configuration in the sequence resulting from
a previous one by a transition in d of M. A Turing machine M recognizes a language L if it accepts
all and only strings in L: that is, Vo € ¥*, M accepts z iff © € L. As before, we write L(M) for the
language accepted by M.

