
COMP 3719
Network flows

Antonina Kolokolova∗

1 Network flows

1.1 Motivating examples

A matching in a bipartite (undirected) graph G is a set of edges such that each vertex has
in at most one edge in the matching. A matching is maximal if it has at least as many
edges as any other matching in the graph; it is perfect, on a graph with n vertices on each
side, if every vertex is an endpoint of exactly one edge included in the matching. This is the
same meaning of the word ”matching” as in the ”stable matching”; however, there are no
rankings, but also no edges between some pairs of vertices on different sides.

The first example we consider will be the following problem: given a bipartite graph G, find
a maximal matching. Alternatively, we can ask, given G, whether there exists a perfect
matching, and if not, what is the maximal matching in this graph. For example, in a graph
with vertices a, b, c on one side and x, y, z on the other, with edges (a, y), (b, z), (c, y)(b, x)
the maximal matchings are of size 2: for example, (b, z), (c, y) is such a matching. However,
if we change (b, x) to (a, x), we can obtain a perfect matching (a, x), (b, z), (c, y).

The second problem sounds very different, but we will approach it using some of the same
tools.

Imagine a mining company that is constructing an open-pit mine for some mineral deposit.
Say they mapped the deposit, and they know, for each cubic meter of soil, what it’s value
would be, and also what is the cost of taking out this cubic meter provided by then there
is nothing above it (assuming they cannot dig horizontally; there could be different ways to
describe ”above”, too: for simplicitly, let’s just say the cubic meter of earth directly above

∗This set of notes uses a variety of sources, in particular some material from Kleinberg-Tardos book and
notes from University of Toronto CSC 364

1

needs to be taken out). They need to decide what to dig out, and what to leave to maximize
profits.

We will approach both of these problems using an algorithm design paradigm called network
flow.

1.2 Flow networks and their properties

Consider a weighted directed graphs, with all weights (here called capacities) all non-negative
real numbers, and two vertices marked s and t. Such a graph (G, c, s, t) is called a flow
network (though a name ”capacity network” or ”capacitated network” could have been
more correct). An intuition for such definition is that in many real-world problems we are
dealing with a system of channels (roads, pipes, etc), where each channel has a capacity, and
the goal is to get as much ”stuff” through the system from the source s to the target t as
possible. In real life applications, of course, there can be multiple sources and targets, but
here we will so far simplify to have only one s and one t. For example, the goal could be to
route traffic through the network where every link has a fixed bandwidth, or get a fleet of
trucks from one location to another, where different roads could have different capacities.

With this intuition in mind, define a flow with respect to this graph as a function f : E → R+

satisfying several properties:

1) (Capacity constraints) ∀e ∈ E, f(e) ≤ c(e). That is, an edge can only have flow up to
its capacity.

2) (Flow conservation) ∀v ∈ V −{s, t},Σu∈V f((u, v)) = Σu∈V f((v, u)). That is, for every
intermediate (not a source and not the target) vertex in the graph, as much stuff that
flows in will flow out.

We will use the notation f(G, c, s, t) (or simply f(G)) to mean the total flow on the flow
network (G, c, s, t), and define it as f(G, c, s, t) = Σu∈V f((s, v)), that is, sum of the flows on
all edges exiting the source s. You will see later that it is the same as defining it as sum of
flows on all edges into t

Example 1 The following is an example of a flow network. Only edges with positive capac-
ities are shown; edges with capacity 0 are omitted from the diagram. Each edge is labelled
with its capacity. For each edge (u, v) that is shown, the edge (v, u) is also assumed to be
present; if the edge (v, u) is not shown, then it has capacity 0.

2

FLOW NETWORK F :

t

v1 v3

v2 v4

7

4

10

13

4s

20

8

14

15

22

The following shows the above example of a flow network, together with a flow.
The notation x/y on an edge (u, v) means

x is the flow (x = f(u, v))
y is the capacity (y = c(u, v))

Only flows on edges of positive capacity are shown. In this example we have |f | = 13+8 = 21.

FLOW NETWORK F WITH A FLOW f :

0/10

v4

t

8/13 4/4

s 7/71/4

v2

v3v1

13/20

14/14

17/22

11/15

4/8

1.3 Residual Networks

Let F be a flow network, f a flow. For any (u, v) ∈ E, the residual capacity of (u, v) induced
by f is

cf (u, v) = c(u, v)− f(u, v) + f(v, u) ≥ 0.

The residual graph of F induced by f is

Gf = (V,Ef)

3

where
Ef = {(u, v) ∈ E | cf (u, v) > 0}.

The flow f also gives rise to the residual flow network Ff = (G, cf , s, t).

The residual network Ff is itself a flow network with capacities cf , and any flow
in Ff is also a flow in F .

Note that if we have a flow f in a network and a flow f0 in the residual network, then f0 can
be added to f to obtain an improved flow in the original network. This will be a technique
we will use to continuously improve flows until we have a maximum possible flow.

1.4 Augmenting Paths

Given a flow network F = (G, c, s, t) and a flow f , an augmenting path π is a simple path
(that is, a path where no vertex repeats) from s to t in the residual graph, Gf ; note that every
edge in Gf has positive capacity. Equivalently, an augmenting path is a simple path from s
to t in G consisting only of edges of positive residual capacity. We will use an augmenting
path to create a flow f0 of positive value in Ff , and then add this to f as in the above
lemma, in order to create the flow f ′ = f + f0 of value bigger than f .

The maximum amount of net flow we can ship along the edges of an augmenting path π is
called the residual capacity of π. We denote it by cf (π); because π is augmenting, cf (π) is
guaranteed to be positive.

cf (π) = min{cf (u, v) | (u, v) is on π} > 0.

Lemma 1 Fix flow network F = (G, c, s, t), flow f , augmenting path π, and define
fπ : E → R+:

fπ(u, v) =

{
cf (π) if (u, v) is on π
0 otherwise

Then fπ is a flow in Ff , and |fπ| = cf (π) > 0.

Corollary 1 Fix flow network F = (G, c, s, t), flow f , augmenting path π, and let fπ be
defined as above. Let f ′ = f + fπ. Then f ′ is a flow in F , and

|f ′| = |f |+ |fπ| > |f |.

4

Example: Continuing the previous example, the following diagram shows the residual graph
Gf consisting of edges with positive residual capacity. The residual capacity of each edge is
also shown. An augmenting path π is indicated by − − −. We have
cf (π) = 4.

THE RESIDUAL GRAPH Gf WITH AUGMENTING PATH π:

17

11

5

8

3

11

7

4

5

v2

v1 v3

v4

t

4

s

13

7

14

4

4

The following diagram shows the network F with flow f ′ = f + fπ. We have
|f ′| = |f |+ |fπ| = 21 + cf (π) = 21 + 4 = 25.

FLOW NETWORK F WITH FLOW f ′:

21/22

v4

t

4/4

s 7/71/4

v2

v3v1

13/20

14/14

11/15

0/10

12/13

0/8

After creating the improved flow f ′, it is natural to try the same trick again and look for an
augmenting path with respect to f ′. That is, we consider the new residual graph Gf ′ and
look for a path from s to t. We see however, that no such path exists.

THE RESIDUAL GRAPH Gf ′ :

5

v4

v1 v3

11 3

11

s

4
12

7

7

13

1

8

14

4

21

1

t

v2

All of the above suggests the famous Ford-Fulkerson algorithm for network flow. The algo-
rithm begins by initializing the flow f to the all-0 flow, that is, the flow that is 0 along every
edge. The algorithm then continually improves f by searching for an augmenting path π,
and using this path to improve f , as in the previous lemma. The algorithm halts when there
is no longer any augmenting path.

Ford-Fulkerson(G, c, s, t)

Initialize flow f to the all-0 flow
WHILE there exists an augmenting path in Gf DO

choose an augmenting path π
f ← f + fπ

end WHILE

There are a number of obvious questions to ask about this algorithm. Firstly, how are we
supposed to search for augmenting paths? That is, how do we look for a path from s to t
in the graph Gf? There are many algorithms we could use. However, since all we want to
do is find a path between two points in an unweighted, directed graph, two of the simplest
and fastest algorithms we can use are “depth-first search” or “breadth-first” search. Each of
these algorithms runs in time linear in the size of the graph, that is, linear in the number of
edges in the graph.

The next question is, is the algorithm guaranteed to halt? The answer to this, remarkably,
is NO. If we do not constrain how the algorithm searches for augmenting paths, then there
are examples where it can run forever. These examples are complicated and use irrational
capacities, and we will not show one here.

What if the capacities are all integers? Then it is clear that the algorithm increases the flow
by at least 1 each time through the loop, and so it will eventually halt. (Exercise: fill in the
details of this argument; give a similar argument in case the capacities are only guaranteed
to be rational numbers.) However, this may still take a very long time.

6

As an example, consider the following flow network with only 4 vertices. If we are lucky
(or careful), the algorithm will choose [s, v1, t] for the first augmenting path, creating a flow
with value 1000; it will then have no choice but to choose [s, v2, t] for the next augmenting
path, and it will be halt, having created a flow with value 2000. However, the algorithm
may choose [s, v1, v2, t] as its first augmenting path, creating a flow with value 1; it may then
choose [s, v2, v1, t] as the next augmenting path, creating a flow with value 2; continuing in
this way, it may go 2000 times through the loop before it eventually halts.

Thus, we can bound the running time by O(mC), where C = Σvc(s, v).

EXAMPLE OF A BAD FLOW NETWORK FOR FORD-FULKERSON:

1000

s t
1

v2

v1

1000

1000 1000

The Edmonds-Karp version of this algorithm looks for a path in Gf using breadth-first search.
This finds a path that contains as few edges as possible. We call this algorithm FF-EK:

FF-EK(G, c, s, t)

Initialize flow f to the all-0 flow
WHILE there exists an augmenting path in Gf DO

choose an augmenting path π using breadth-first search in Gf

f ← f + fπ
end WHILE

Let us assume (without loss of generality) that |E| ≥ |V |. Then breadth-first search finds
an augmenting path (if there is one) in time O(|E|). Using an augmenting path to improve
the flow takes time O(|E|), so each execution of the main loop runs in time O(|E|).

7

It is a difficult theorem (that we will not prove here) that the main loop of FF-EK will be
executed at most O(|V ||E|) times. Thus, FF-EK halts in time O(|V ||E|2). Hence, this is a
polynomial time algorithm. A huge amount of research has been done in this area, and even
better algorithms have been found. One of the fastest has running time O(|V |3).

Example: Consider the previous example of flow network F with flow f ′. We know that
|f ′| = 25, and so the flow across every cut will be 25, and the capacity of every cut will be
greater than or equal to 25. We have seen that there is no augmenting path, so the above
theorem tells us that there must be a cut of capacity 25. It even tells us how to find such a
cut: let S be the set of nodes reachable from s in Gf ′ . In fact, it is easy to check that if we
choose S = {s, v1, v2, v4} and T = {v3, t}, then c(S, T) = 14 + 7 + 4 = 25.

1.5 Solving bipartite matching problem

Now recall our first motivating example: the bipartite matching problem.

It turns out that there is a way to convert such a matching problem into a flow problem.
First we add two vertices to create V ′ = V ∪ {s, t}. We add edges from s to each vertex in
L, and edges from each vertex in R to t; all of these edges (including the original edges in
E) are assigned capacity 1. Lastly, we add the the reverse of all these edges, with capacity
0. In this way we form the flow network F = (G′, c, s, t), G′ = (V ′, E ′). Consider integer
flows in F , that is, flows that take on integer values on every edge; for each edge of capacity
1, the flow on it must be either 1 or 0 (since its reverse edge has capacity 0). It is easy to
see that Ford-Fulkerson, when applied to a network with only integer capacities, will always
yield an integer (maximum) flow. The following two lemmas show that an integer flow f can
be used to construct a matching of size |f |, and that a matching M can be used to construct
a flow of value |M |. This will allow us to use Ford-Fulkerson to compute a maximum flow
in polynomial time.

Lemma 2 Let G = (V,E) and F = (G′, c, s, t) be as above, and let f be an integer flow in
F . Then there is a matching M in G such that |M | = |f |.

Proof:
Let f be an integer flow. Let M = {(u, v) ∈ L×R | f(u, v) = 1.}.

To see why M is a matching, imagine that (u, v1), (u, v2) ∈M for some v1 6= v2; since u has
only one edge of positive capacity (namely 1) coming into it, we would have

∑
v∈N(u) f(u, v) ≥

1, contradicting flow conservation. (A similar argument shows that no two edges in M can
share a right endpoint.)

We now show that |M | = |f |. Recall that |f | is equal to the total flow coming out of s. So
we must have |f | distinct vertices u1, u2, . . . , u|f | such that

8

f(s, u1) = 1, f(s, u2) = 1, . . . , f(s, u|f |) = 1. So in order for flow conservation to hold, for
each ui we must have some vi ∈ R such that f(ui, vi) = 1. So (ui, vi) ∈ M for each i, and
we have |M | = |f |.

Lemma 3 Let G = (V,E) and F = (G′, c, s, t) be as above, and let M be a matching in G.
Then there exists a flow f in F with |f | = |M |.

Proof:
Let M = {(u1, v1), (u2, v2), . . . , (u|M |, v|M |) ⊆ L×R} be a matching. Define f by
f(s, ui) = 1, f(ui, vi) = 1, f(vi, t) = 1 for each i, and f(e) = 0 for every other edge e ∈ E ′.
It is easy to check that f is a flow, and that |f | = |M | (exercise).

We now see how to use Ford-Fulkerson to find a maximum matching in G = (V,E). Assume,
without loss of generality, that |V | ≤ |E|. Note that |V ′| ∈ O(|V |) and |E ′| ∈ O(|E|).

We first construct F = (G′, c, s, t) as above; this takes time O(|E|). We then perform the
Ford-Fulkerson algorithm to create a maximum flow f . We observe that this algorithm, no
matter how we find augmenting paths, will increase the flow value by exactly 1 each time,
and hence will execute its main loop at most |V | times. If we use an O(|E|) time algorithm
to search for augmenting paths, then each execution of the loop will take time O(|E|). So
the total time of the Ford-Fulkerson algorithm here is O(|V ||E|). Lastly, we use the integer
flow f to create a matching M in G such that |M | = |f |; this takes time O(|E|). The last
lemma above tells us that since f is a maximum flow, M must be a maximum matching.

So the entire maximum matching algorithm runs in time O(|V ||E|). This is a polynomial
time algorithm. Faster algorithms have also been found. For example, there is an algorithm
for this problem that runs in time O(

√
|V ||E|).

Example: The following is an example of a (directed) bipartite graph G. The next figure
shows the network F derived from G, together with a maximum flow f in F . The last figure
shows the maximum matching M obtained from f .

ts
1/1

1/1

1/1

1/1

0/1

0/1

0/1

1/1

1/1

1/1

1/1

0/1

1/1

9

1.6 Cuts of Flow Networks

For the moment, we will concern ourselves with one more question about the algorithm.
Let’s assume it does halt; is it then the case that the flow it has found is as large as possible?
The answer turns out to be YES! We know that if an augmenting path exists then the current
flow is not optimal. We want to prove that if there is no augmenting path, then the current
flow is optimal.

This is a subtle proof. Let us fix flow network F = (G, c, s, t), G = (V,E), and flow f .
We are going to introduce the new notion of a cut of F . We will see that if there is no
augmenting path, then there will exist a special cut that shows that f is optimal.

A cut (S, T) of F is a partition of V into S and T = V − S such that s ∈ S and t ∈ T . We
define the capacity of (S, T) to be the sum of the capacities over all edges going from S to
T ; note that this is a sum of nonnegative numbers. We define the flow across (S, T) to be
the sum of the flows over all edges going from S to T ; note that this sum may consist of
negative numbers. More formally:

The capacity of the cut (S, T) is defined by

c(S, T) =
∑

(x,y)∈(S×T)∩E

c(x, y)

The flow across (S, T) is

f(S, T) =
∑

(x,y)∈(S×T)∩E

f(x, y)− f(y, x)

Example: Consider our earlier example of the flow network F with flow f ′. Consider
the cut (S, T) = ({s, v3}, {t, v1, v2, v4}). We have c(S, T) = 20 + 13 + 8 + 22 = 63 and
f ′(S, T) = 13 + 12 + (−14) + (−7) + 21 = 25.

We see that f(S, T) in the above example is exactly equal to |f |, and this is no coincidence.
Intuitively it makes sense that the amount flowing out of s should be exactly the same as
the amount flowing across any cut, and this is proven in the next lemma. In particular, by
considering the cut (V −{t}, {t}), we see that |f | is exactly equal to the amount flowing into
t.

Lemma 4 Fix flow network F = (G, c, s, t) and flow f . Then for every cut (S, T),
f(S, T) = |f |.

Corollary 2 Fix flow network F = (G, c, s, t) and flow f . Then for every cut (S, T),
f(S, T) ≤ c(S, T).

10

Corollary 3 The value of every flow in F is less than or equal to the capacity of every cut
of F .

We now state and prove the famous “max-flow, min cut” theorem. This theorem says that
the maximum value over all flows in F is exactly equal to the minimum capacity over all
cuts. It also tells us that if F has no augmenting paths with respect to a flow f , then |f | is
the maximum possible.

Theorem 1 (MAX-FLOW, MIN-CUT THEOREM)
Fix flow network F = (G, c, s, t), G = (V,E), and flow f . Then the following are equivalent

1) f is a max flow (that is, a flow of maximum possible value) in F .

2) There are no augmenting paths with respect to f .

3) |f | = c(S, T) for some cut (S, T) of F .

Proof:
(1)⇒ (2)
Suppose (1) holds. We have already seen that if there were an augmenting path with respect
to f , then a flow with value larger than |f | could be constructed. Since f is a max flow,
there must be no augmenting paths.

(2)⇒ (3)
Suppose (2) holds. Then there is no path from s to t in Gf .
Let S = {v ∈ V | there exists a path from s to v in Gf}, and let T = V − S. Clearly (S, T)
is a cut. We claim that |f | = c(S, T). ¿From the above Lemma 3, it suffices to show that
f(S, T) = c(S, T). For this, it suffices to show that for every edge (u, v) ∈ (S × T) ∩ E,
f(u, v) = c(u, v). So consider such an edge (u, v). If we had f(u, v) < c(u, v), then (u, v)
would be an edge with positive residual capacity, and hence (u, v) would be an edge of Gf ,
and hence (since u ∈ S), there would be a path in Gf from s to v, and hence v ∈ S – a
contradiction.

(3)⇒ (1)
Suppose (3) holds. Let (S, T) be a cut of F such that |f | = c(S, T). ¿From the above
corollary, we know that every flow has value less than or equal to c(S, T), and hence every
flow has value less than or equal to |f |. So f is a max flow.

This theorem tells us that if Ford-Fulkerson halts, then the resulting flow is optimal.

11

1.7 Open-pit mining/project selection application

Recall our second motivating example: given a mineral deposit where the cost and profit of
excavating of every cubic meter of soil is known, and a cubic meter of soil can be excavated
only if the one directly above is taken out, determine which ones to take out when construct-
ing an open-pit mine. That is, we want to find a ”cut” in the ground which will give us the
best profit.

Construct a weight graph G as follows. Make a vertex for every cubic meter of soil (call
them units, for brevity), and add two extra vertices s and t. For unit, make an edge of cost
∞ from its vertex to the vertex corresponding to the unit right above it. Connect s to every
vertex corresponding to units with cost < profit by an edge of weight pi = profiti − costi.
Connect every vertex corresponding to a unit with cost > profit (that is, net profit pi < 0)
to t by an edge of weight −pi = costi − profiti.

Now, run Ford-Fulkerson, and calculate the minimal cut by running BFS from s in the final
residual network to compute the set of vertices S reachable from s. Now, this set of vertices
(minus s) is the set of units that should be dug out to maximize the profit.

1.8 Circulations and survey design application.

Let us consider one more application, with an additional type of constraints. We will show
how to reduce it to the flow networks considered before, and define a more general notion of
flow, suitable for a wide range of applications.

Suppose a company wants to send a survey to some customers about some products they
bought. But their requirements now have both upper and lower bounds. They want to ask
each customer i at least ci and at most c′i questions (one customer should have at most
one question for each product), and want at least pj and at most p′j about each product j.
However, rather than asking for a maximum, they just want to know if it is possible to do,
and if so, which customers should be asked about which products.

If we would only have upper bounds on the number of questions for each customer and
a number of questions about each product, then we would solve it by constructing a flow
network similar to the bipartite matching: make a bipartite graph with customers on one side
and products on the other, each customer is connected by edges of weight 1 to the product
they bought, the source s is a new vertex connected by edges of weight c′i to customers, and
products are connected to the new vertex t by edges of weight p′j. Running Ford-Fulkerson
on this network (assuming integer-valued capacities and thus integer-valued resulting flow)
would tell us a maximum number of questions that could be asked over all customers. The
matching between customers and the products they are asked about will correspond to edges
between customers and products which got non-zero flow.

12

However, this matching is not guaranteed to satisfy the lower bounds. One possibility would
be to start by assigning each edge a flow equal to the lower bound. If we do that, though,
then this creates an imbalance between the incoming and outgoing flow for some vertices.
So some vertices become a little like sources, and some like sinks. There is a variant of flow
networks, though, that deals exactly with this scenario of unbalanced flow, and feasibility
rather than maximization: circulations.

In a circulation problem, there is no dedicated source or target. Instead, each vertex v has
an associated demand dv ∈ R, which says how much extra flow v wants to receive (if dv > 0
) or give away (dv < 0). And a circulation is feasible if these demands and supplies can be
all satisfied, that is, there exists a flow that meets all capacity restrains (for every edge e,
0 ≤ f(e) ≤ c(e)) as well as demand conditions: for each vertex v, Σuf(u, v)−Σu(v, u) = dv.
In particular, if there is a feasible circulation, then Σv,dv<0 − dv = Σv,dv>0dv.

The problem of finding a feasible circulation reduces to a maximum flow problem. For that,
create a new source s∗ and new targed t∗. We will use s∗ to ”supply extra flow” to vertices
with demand dv > 0, and t∗ will ”take off the extra” from the vertices with dv < 0 by
connecting, respectively, s∗ to all vertices with dv < 0 by edges of capacity −dv, and all
vertices with dv > 0 to t∗ by edges with capacity dv. Now, if the flow that needs to be
”added and then removed” is Σv,dv>0dv, then there is a feasible circulation in the graph.

Note that extending the circulation problem to the case where each edge has both the upper
bound and the lower bound now becomes easy. Let c(e) be the capacity of edge e (upper
bound), as before, and l(e) a lower bound on the flow on edge e. As we tried to do for the
survey design problem, preset each edge with its value le, obtaining a network with capacities
c(e) − l(e) for each edge, and demands dv + Σul(u, v) − Σul(v, u). Now, there is a feasible
circulation in this new network if there was a feasible circulation in the original network
satisfying the lower bouds.

Getting back to our application to survey design, but specifying lower and upper bounds on
the edges we almost obtained an instance of the circulation problem with lower bounds on
edges, with all initial demands being 0. The remaining question is how to handle vertices s
and t, as there are no dedicated sources/targets in the circulation, and we do not want to
fix a specific demand value for them. A simple solution is to make it possible to ”recirculate
back” from t to s as much flow as there can be; thus, adding an edge (t, s) with capacity
Σic
′
i and a lower bound Σici completes the design of the network.

13

