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1 Pushdown automata

We just proved that some languages are not regular. And, moreover, the examples we
have seen are languages that can easily be computed by a simple algorithm in any modern
programming language. Now a natural question is whether it is possible to add a little
extra power to NFAs, so that the resulting model of computation would be able to handle
languages such as {0nqn}. Indeed, it is possible to do so by giving NFAs a little “ability to
count”, some unlimited memory. There are several ways of adding memory to NFAs, and
we will look at two of them, Pushdown Automata and Turing machine (in short, Pushdown
Automata have an access to an unlimited stack, and Turing machines to an unlimited tape.)
In this lecture, we will look at Pushdown automata and analyze its power. Later we will
show that Pushdown Automata still fall short of computing many languages that we view
as easily computable by our usual algorithmic techniques.

Informally, a pushdown automaton is just an NFA with a stack. So the additional part of
the description of such an automaton should include transitions that operate with the stack,
as well as stack alphabet.

Definition 7. A pushdown automaton (PDA) is a 6-tuple (Q,Σ,Γ, δ, q0, F ) where Q is the
set of states, Σ the input alphabet, Γ the stack alphabet, q0 the start state, F is the set of
finite states and the transition function δ : Q× (Σ ∪ {ε})× (Γ ∪ {ε})→ P(Q× (Γ ∪ {ε})).

That is, each transition of a PDA pops a symbol (possibly ε, corresponding to popping
nothing) off the stack; δ specifies which set of states to go from the current state on reading
an input symbol and a stack symbol, and for every such state, which, if any, symbol to push
onto the stack.

∗The material in this set of notes came from many sources, in particular “Introduction to Theory of
Computation” by Sipser and course notes of U. of Toronto CS 364.
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Note that this definition extend the definition of a non-deterministic finite automaton. It is
possible to define deterministic pushdown automata by similarly extending the definition of
a DFA. However, there are languages accepted by non-deterministic PDAs that no determin-
istic one can accept (such as a set of palindromes). The proof of this is beyond the scope of
this course; however, it is good to remember this as a case where non-determinism actually
results in a more powerful model of computation: it didn’t for the finite automata. Later
in the course we will talk about the P vs. NP problem, a major open problem in computer
science which asks about the role of non-determinism for feasible computation.

Example 1. Recall the language {0n1n} which we have shown to be non-regular in previous
lecture. The following PDA accepts this language.

1,0 −>
q3q0 q1 q2

1,0 −>

ε, ε −> $ ε,   −> ε

ε

$

0,   −> 0ε

ε

Here, the tape alphabet is Γ = {0, $}, where $ is a special symbol used as an empty stack
marker. Since we never need to put 1 on the stack in this PDA, it is OK not to have 1 in Γ,
although it is common to take Σ ⊆ Γ.

Let us do one more example of a Pushdown Automaton. In this case, we will consider a
language where non-determinism is really unavoidable: {aibjck|i = j ∨ i = k}.

Example 2. The following PDA recognizes the language {aibjck|i = j ∨ i = k}.

q3q0 q1 q2
ε, ε −> $$ ε,   −> ε

q4 q5 q6

ε, ε −>ε

ε, ε −>ε

ε,   −> ε$

 , ε −>ε

ε, ε −>ε

εb c,a −>

b,a −>εεa,   −> a 
  , ε −> εc

Here, the tape alphabet is Γ = {a, $}. Note the non-deterministic choice this PDA makes:
in the state q1 it forks between the automaton matching letters b to letters a on the stack,
or matching the c’s.
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2 Context-Free Grammars

We have shown earlier that regular languages can be described by regular expressions. It
is natural to ask is there a similar description for the languages computed by pushdown
automata. Indeed there is, and it is a natural formalism that has been used for a long time
on its own: context-free grammars. Noam Chomsky defined them as one of the types in
his hierarchy; the context-free grammar syntax has been used in the programming language
community to describe the syntax of programming languages since Algol (known there as
Backus-Naur Form).

When you think of a grammar the first thing that might come to mind is studying a natural
language such as French in school, and all these rules about nouns and verbs. Indeed, it is
possible to do much of natural language processing (although not everything) using context-
free grammar formalism.

Example 3. Consider the following rules:

< sentence > − > < nounphrase >< verbphrase >

< verbphrase > − > < verb > | < verb >< nounphrase >

< nounphrase > − >Jane|the assignment

< verb > − >solved|did|decided

For example, a sentence “Jane did the assignment” can be generated by this grammar, and
also “Jane solved”. On the other hand, this grammar can generate “The assignment solved
Jane”, which might not be a desired result.

Now that we have seen an example, let’s define formally what is a context-free grammar.

Definition 8. A context-free grammar (CFG) is a 4-tuple (V,Σ, R, S), where

1) V is a finite set of variables, with S ∈ V the start variable.

2) Σ is a finite set of terminals (disjoint from the set of variables).

3) R is a finite set of rules, with each rule consisting of a variable followed by − > followed
by a string of variables and terminals.

A grammar is a set of substitution rules, where a variable at the head of a rule can be
substituted by the string in the body of a rule whenever that variable occurs. Let A → w
be a rule of the grammar, where w is a string of variables and terminals. Then A can be
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replaced in another rule by w: uAv in a body of another rule can be replaced by uwv (we
say uAv yields uwv,denoted uAv ⇒ uwv). If there is a sequence u = u1, u2, . . . uk = v such

that for all i, 1 ≤ i < k, ui ⇒ ui+1 then we say that u derives v (denoted v
∗⇒ v.)

Definition 9. If G is a context-free grammar, then the language of G is the set of all strings
of terminals that can be generated from the start variable: L(G) = {w ∈ Σ∗|S ∗⇒ w}. A
language is called a context-free language (CFL) if there exists a CFG generating it.

In the above example, variables are < sentence >,< nounphrase >,< verbphrase >, and
< verb >, with the start variable S =< sentence >, the Σ = { Jane, the assignment,
solved,did,decided } and R consists of the rules listed above. To be more precise, there
are more rules than 4: we used a shortcut “—” for several different rules starting with
the same variable. E..g, we should have had two rules < nounphrase > − > Jane, and
< nounphrase > − > the assignment.

To see how a CFG can generate a nonregular language, consider the language {0n1n} for
which we constructed a PDA in the last lecture.

Example 4. The following CFG generates the language {0n1n}:

A− > 0A1|ε

A derivation of a string 000111 in this grammar is:

A− > 0A1− > 00A11− > 000A111− > 000111

The last step is because adding or removing an empty substring ε does not change a string.

We often visualize a derivation as a tree (a parse tree), with variables as internal nodes and
terminals as leaves.

Example 5. Consider the following grammar. Here is a parse tree for a string 0110101.
Note that there are several possible parse trees for this string. In this case, we say that a
grammar is ambiguous.

A→ AA
A→ BAB
B → OB
B → ε
A→ 1

ε

B B

0 0B BA A

ε ε1 1

A

A A

AA

AB B

ε0 B

1

1

A

4



2.1 Arithmetic expressions

A canonical example of use of context-grammars is in parsing. In particular, here we will
see how to parse an arithmetic expression using context-free grammars.

Example 6. Consider the following grammar G1:

EXPR→ EXPR + EXPR|EXPR ∗ EXPR|(EXPR)|x|y|z|0|1|2|3

This grammar generates arithmetic expressions such as x + 2 ∗ y. However, there is a
problem: it generates it ambiguously, ignoring precedence rules. So evaluating the expression
according to the tree might give different answers, depending whether the first rule applied
was multiplication or addition.

EXPR EXPR

/ | \ / | \

EXPR + EXPR EXPR * EXPR

| / | \ / | \ |

x 2 * y x + 2 y

How would we modify the grammar to make it respect precedence rules? One way of doing it
is to give different names to parts of a sum vs. parts of a product and treat them differently.

Example 7. Consider the following grammar G1, with EXPR the start symbol.

EXPR→ EXPR + TERM |TERM
TERM → TERM ∗ FACTOR|FACTOR
FACTOR→ (EXPR)|x|y|z|0|1|2|3

Note that in this case for the arithmetic expression there is only one possible parse tree:

EXPR

/ | \

EXPR + TERM

| / | \

TERM TERM * FACTOR

| | |

FACTOR FACTOR y

| |

x 2
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3 Pumping lemma for CFLs

Just like we proved that certain languages are not regular by defining a property (pumping
lemma) which all regular languages satisfy, and then showing that some languages don’t, we
will define a same kind of property for context-free languages.

Consider a simple grammar A → aAb,A → c. It is clear that it generates a non-regular
language: a pumping lemma proof would say that either a’s or b’s would have to be pumped
separately, or c would be repeated multiple times, resulting in strings not in the language.
However, if we could pump both a’s and b’s at the same time, this would work.

With this intuition, we state the pumping lemma for context-free languages.

Lemma 7. Let L be a context-free language. Then there exists a natural number p such that
∀s ∈ L, |s| ≥ p, s = uvxyz where

1) ∀i ≥ 0, uvixyiz ∈ L

2) |vy| > 0

3) |vxy| ≤ p.

That is, if regular languages could be split into three parts so that the middle part could be
iterated without creating strings not in the language, for CFLs the split is into 5 parts so
that the middle and the sides stay, and the 2nd and 4th parts are iterated simultaneously.
For the grammar we just saw u can consist of several a’s, and y of the same number of b’s;
the middle part x contains the c.

Proof. In the proof for regular languages, we found a repeating part by looking at the states
of the automaton and finding a repeating states. Here, we will do the same, but with parse
trees.

Here is an idea. Consider a parse tree which is so high that its height is more than the
number of variables in the grammar. Why should such a tree exist? It is because if the
language is infinite, then there are infinitely many parse trees, at least one distinct tree for a
different string in the language (remember that a string is a sequence of leaves of the parse
tree). There are finitely many rules, and each rule is of finite length, so the only way to have
infinitely many trees is to allow them to grow to an arbitrary height.

Let’s look more carefully at the possible parse trees. Suppose that the number of symbols
(variables and terminals) in the body of the longest rule is d: then our tree would be d-
ary (every node having at most d children). We need to know what is the shortest string
guaranteed to have a parse tree of height at least |V | + 1. Recall that the longest possible
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string produced by a d-ary tree of height h has length dh: it corresponds to a sequence of
leaves of a complete d-ary tree of height h. Therefore, if we take a string of length at least
d|V | + 1 it is guaranteed to have all parse trees of height at least |V | + 1. For convenience,
we can choose even larger p; let p = d|V |+1.

Now, why would we be interested in trees of
this form? Consider the largest path from the
root to a leaf in this tree. Since the height
of the tree is greater than the number of vari-
ables, there would be a repeating variable, say
A, on this path. A variable occurring in a
parse tree means that a rule with this vari-
able at the head was applied. But now notice
that there is no way in the grammar to differ-
entiate these occurrences and say how many
there should be; thus, a subtree rooted at the
first occurrence of A can be replaced by sub-
tree in the second occurrence, and vice verse.
The first one gives us i = 0 from the pumping
lemma, and iterating the second one gives any
i we desire (see the figure).

A

S

A

u x yv z

To check the second condition, suppose that we start with the smallest possible parse tree
for the string. Then doing the substitution of the first occurrence by the second would give
us an even smaller tree, which is a contradiction.

Finally, let’s prove the third condition. Starting from the bottom of the tree, choose the first
time from the bottom a variable repeats; call that variable A. A subtree under A is of height
at most |V |+ 1, so it generates a string of length at most p. Here, the second occurrence of
A generates vxy where the bottom occurrence generates x.

Now, let’s see how this lemma can be used to show that some languages are not context-free.

Example 8. The language {anbncn} is not context-free.

Suppose it is. Then let p be the pumping length, and take s = apbpcp. Now, just like in
the proof that {0n1n} is not regular, no matter how we split s = uvxyz, either v and y are
monochromatic and thus repeating them disrupts the equality of the numbers, or they are
not monochromatic and repeating them disrupts the order.

Now, recall that the language {anbncm} is context-free: it is a special case of {aibjck|i =
j or i = k}. Also, {anbmcn} is context-free, for the same reason. But their intersection is
exactly {anbncn}, which we just shown to be not context-free! This leads us to a surprising
corollary:
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Corollary 8. The class of context-free languages are not closed under intersection.

From there, we can also show that there is a context-free language such that its comlement
is not context-free: since union of two context-free languages is contex-free, and for any sets

A and B, A ∩ B = A ∪B by DeMorgan’s law, if CFLs were closed under complementation
they would also be closed under intersection.

Corollary 9. The class of context-free languages are not closed under complementation.

Example 9. The language {ww|w ∈ {0, 1}∗} is not context-free.

Take s = 0p1p0p1p. By the 3rd condition of the pumping lemma, that |vxy| ≤ p, the sequence
vxy overlaps at most two out of four blocks in our string. Either it is part of 0p1p; then
repeating any part of it will disrupt the equality with the second half of s. Or it overlaps the
1p0p piece in the middle; but then either v or y are monochromatic: say y is, and it consists
of just 0s. But now repeating y will increase the number of 0s in the second copy of w, but
not the first, again disrupting the equality.

3.1 Regular languages vs. context-free languages

We have seen an example of a nonregular language that is context-free. But are there
regular languages that are not context-free? Here, we will show that indeed the class of
regular languages is a (strict) subset of the class of context-free languages, by showing that
every regular language is context-free.

Note that once we show that pushdown automata accept exactly context-free languages
the proof becomes easy: just construct a pushdown automaton out of a NFA which would
ignore the stack; you can see that this PDA would accept the same language as the NFA.
But as a warm-up for showing the equivalence between context-free languages and pushdown
automata, let us show directly that every regular language can be generated by a context-free
grammar.

As an example of the ideas involved in the proof, let us show that context-free languages
are closed under the star operation. Suppose that G is a context-free grammar. We would
like to create a grammar for L(G)∗, where each element is a finite string consisting of 0 or
more concatenated strings from L(G). Let S be the start symbol of G. Now, add a rule
S → SS|ε to the grammar. Suppose a string w consists of k occurrences of strings from
L(G). If k = 0, then G generates w by the S → ε part of the rule. Otherwise, if k > 0,
then apply the first part of the rule k − 1 times, and then use the rest of the rules of the
grammar. This shows that every string in L(G)∗ is generated by the new grammar. But
how can we make sure that no spurious strings are generated? A trick we can use here is to
modify the original grammar first so that there are no more rules using S, other than the
start rule. For that, just introduce a new start symbol S0 and add a rule S0 → S. Now,
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think of a parse tree for this grammar. Once a symbol other than S0 appears on a path
from the root down, S0 cannot appear anywhere below it. So the whole subtree will be
generated according to the rules of the original grammar, resulting in a string from G. Since
this applies to every subtree (except for ones with ε-leaves which can be ignored as part of
the string), the resulting string will be a concatenation of strings in L(G).

Theorem 10. Every regular language is context-free.

Proof. Let A be a regular language. Then there exists a DFA N = (Q,Σ, δ, q0, F ) such that
L(N) = A. Build a context-free grammar G = (V,Σ, R, S) as follows. Set V = {Ri|qi ∈ Q}
(that is, G has a variable for every state of N). Now, for every transition δ(qi, a) = qj add a
rule Ri → aRj. For every accepting state qi ∈ F add a rule Ri → ε. Finally, make the start
variable S = R0.

Example 10. Consider a deterministic automaton with 3 states accepting all strings con-
taining ab which has transitions δ(q0, a) = q1 and δ(q1, b) = q2, among others. Here, q0 is a
start state and F = {q2}. Add rules R0 → aR1, R1 → bR2, R2 → ε (and similarly for the
rest of transitions). Make S = R0. You can check that the resulting grammar generates all
strings with a substring ab.

Last class we saw that regular languages are a subclass of context-free languages. You may
be wondering what other main types of (grammar-defined) languages there are. In mid-50s,
Noam Chomsky has classified grammars into 4 main types. Type 3 is regular; type 2 context-
free. The other two are context-sensitive and then unrestricted grammars. The last type is
equivalent to Turing machines we will soon study; context-sensitive languages correspond to
linear bounded automata which we will skip in this course.

Every context-free grammar can be transformed into one in Chomsky Normal Form: there,
only rules of the form A → BC and A → a are allowed (as well as S → ε for the start
symbol S; however, in Chomsky Normal Form S cannot occur in the body of any of the
rules). Here, A,B,C, S are variables and a ∈ Σ. We will skip a proof that every context-free
grammar can be converted into one in normal form; see e.g. Sipser’s textbook for the proof.

3.2 Equivalence between pushdown automata and context-free
languages

Just like we have shown that regular expressions and finite automata recognize the same class
of languages, we can show that context-free grammars and pushdown automata recognize
the same larger class of languages.

Theorem 11. A language A is context-free if and only if there exists a pushdown automata
N such that L(N) = A.
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We will skip the proof (see Sipser’s book for it).

Intuitively, to construct a PDA given a grammar we build a pushdown automaton similar
to one for the same number of a’s and b’s language: there will be one “central” state,
which would contain transitions for every rule of the grammar, with variables and terminals
of the grammar (plus the end marker) forming Γ. First, put the end marker $ and then
the start state onto the stack. At every iteration of the loop at the central state, non-
deterministically choose one of the rules to apply as follows: if popping the stack produces a
variable, push the right side of some rule for this variable onto the stack (that might require
several intermediate states to push several symbols). If the top of the stack is a terminal
(symbol from the alphabet), match it with the input.

The idea of the proof of the other direction is similar to the example with constructing a
context-free grammar from a DFA. The extra work would be in keeping track of what is on
the stack. See Sipser’s book for the proof.
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