
COMP 3719 (Theory of Computation and algorithms) –
Computability and undecidability

Antonina Kolokolova∗

Winter 2019

1 Computability

A Turing machine M recognizes a language L if it accepts all and only strings in L: that is,
∀x ∈ Σ∗, M accepts x iff x ∈ L. As before, we write (M) for the language accepted by M .

Definition 13. A language L is called semi-decidable (also called recursively enumerable,
r.e, or Turing-recognizable) if ∃ a Turing machine M such that (M) = L.

A language L is called decidable (or recursive) if ∃ a Turing machine M such that (M) = L,
and additionally, M halts on all inputs x ∈ Σ∗. That is, for every input string x ∈ Σ∗ on
the tape at the start of the computation, M either enters the state qaccept or qreject in some
point in computation.

It is possible to define a Turing machine producing an output; in that case, the Turing
machine halts in an accepts state, with the tape clear except for the output and head
pointing to the first symbol of the output.

Definition 14. A function f : Σ∗1 → Σ∗2 is computable if there is a Turing machine M that
halts on every input x ∈ Σ∗1 with f(x) as its output on the tape.

One reason that these languages are called “recursively enumerable” is that it is possible to
“enumerate” all strings in such a language by a special type of Turing machine, enumerator.
This Turing machine starts on blank input and runs forever; as it runs, it outputs (e.g., on
some additional tape or part of the main tape) all the strings in the language. It is allowed
to print the same string multiple times, as long as it does not print anything not in the

∗The material in this set of notes came from many sources, in particular “Introduction to Theory of
Computation” by Sipser and course notes of U. of Toronto CS 364. Many thanks to Richard Bajona for
taking notes!

1

language and eventually print every string that is in the language. See Sipser’s book for a
formal definition and a proof of equivalence.

There is yet another definition of the class of semi-decidable languages, which is quite useful
for some of the proofs. Note that to check that a Turing machine M accepted a string x it
is enough to look at a run of M with input x, and confirm that it stops in an accept state
after a finite number of steps when started with x as an input. However, if a machine M
does not accept x, no such run exists. More generally, we can equivalently define the class
of semi-decidable languages as follows.

Theorem 15. A language is L semi-decidable if there exists a Turing machine VL (where
V stands for ”verifier”) halting on every input such that for all x ∈ Σ∗, x ∈ L if and only if
there exists a finite string y (over a possibly different finite alphabet) such that 〈x, y〉 ∈ L(VL).
We call y a proof (or certificate) of x being in L.

Proof. To see why every language that has such verifier is semi-decidable, consider a Turing
machine ML which, starting with an input x, tries all possible y starting from the empty
string λ and runs the verifier on 〈x, y〉 for each y. If for some y the pair 〈x, y〉 is accepted by
the verifier, then ML accepts. Since each run of the verifier takes a finite amount of time,
ML never ”gets stuck” on any of the ys. Otherwise, it runs forever, trying longer and longer
potential proofs. Thus, L(ML) = L.

For the other direction of the equivalence, suppose that L is semi-decidable by some Turing
machine ML. We want to show that execution of ML with an input x can be encoded by a
finite string y, which can serve as an easily verifiable proof when ML accepts x. Here is one
possible way to describe such a proof, using the terminology of a ”configuration” of a Turing
machine.

Recall that at any step of the computation of a Turing machine its subsequent behaviour
depends only on its state, content of its tape (where non-blank part is always finite) and a
position of its head. For compactness, let’s write a given configuration as a string encoding
non-blank part of the tape (more specifically, the part between the start of the tape and last
non-blank symbol, if any), with an additional symbol denoting the state inserted before (to
the left) of the symbol being read. For example, if the tape contains string 010 surrounded
by blanks, and the Turing machine is in a state q7 reading the second symbol (the 1), we
can encode it as a finite string 0q710. Now, an accepting (or rejecting) computation of a
Turing machine can be written as a sequence of its configurations, starting with q0x1 . . . xn
for the input x = x1 . . . xn, and ending in a string containing qa (respectively, qr). Also, it
is very easy to check that each subsequent configuration was obtained from a previous by a
valid transition of this Turing machine: just check that the configuration is essentially the
same, except the character under the head and the state might have changed, with the head
moving left or right (that is, state character swapping places with a symbol to the left, or a
(potentially new) symbol to the right.

2

Thus, verifying that a given string y encodes a correct computation of a given Turing machine
is a decidable problem. So if a decider VL (which already knows ML) gets x and then a y
encoding a computation of ML on x as above, it can quickly verify that the sequence starts
with q0x1 . . . xn, ends with a string containing qa, and all steps are valid. This completes the
proof that for any semi-decidable L there exists a verifier VL as above.

For convenience, let us define VA(〈M〉, w, C) to be a decidable predicate which is true if C
is a correct accepting computation of M on w. Similarly, we can define VR(〈M〉, w, C) true
if C is a rejecting computation of M on w (which is decidable for the same reason as for
VA), VH(〈M〉, w, C) for a halting computation, etc. Generally, if S is a set of states of a
Turing machine, we can define a predicate VS(〈M〉, w, C) that is true whether C is a correct
computation of M on w ending in a state from C (e.g. for VH , S = {qaccept, qreject}). As
before, this will be a decidable (by a corresponding verifier program). Here, 〈M〉 usually is
part of x, C part of y, and, depending on the language, w can be part of x or part of y,

1.1 Church-Turing thesis

Let’s recap how it all started. In 1990, Hilbert stated a list of problems for mathematicians
of the next century; some of these problems asked to ”devise a procedure”; two of those prob-
lems are ”devise a procedure for solving an equation over integers (Diophantine equations)”
that you have seen in the first lecture, and ”devise a procedure that, given a statement of
mathematics, would decide if it is true or false”.

Alan Turing was working on Hilbert’s problem that asked for an algorithm that for any
statement of mathematics would state whether it is true or false; Gödel has shown (his
famous Incompleteness Theorem) that there are statements of mathematics for which such
answer cannot be given, but it remained open at that time whether there is such a procedure
for statements for which that answer could be given. There were several mathematicians
working on this problem at that time; notably, Alonco Church solved this problem (to give a
negative answer) at about the same time, by inventing lambda-calculus. Turing’s approach
is somewhat more computational: he defined a model of computation which we now call
the Turing machine, equivalent to Church’s model in terms of power, and used it to show
undecidability results, thus giving a negative answer to Hilbert’s problem.

Definition 15 (Church-Turing thesis). Anything computable by an algorithm of any kind
(our intuitive notion of algorithm) is computable by a Turing machine.

Since this statement talks about an intuitive notion of algorithm we cannot really prove it;
all we can do is that whenever we think of a natural notion of an algorithm, show that this
can be done by a Turing machine.

3

In this lecture we will show that even though Turing machines are considered to be as
powerful as any algorithm we can think of, there are languages that are not computable by
Turing machines. Thus, for these languages, it is likely that no algorithm we can think of
would work.

We will present two proofs of existence of undecidable languages. The first proof is non-
constructive, using Cantor’s diagonalization. The second proof presents an actual language
that is undecidable.

1.2 Diagonalization

The Diagonalization method is used to prove that two (infinite) sets have different cardinal-
ities, that is, a set A is larger than the set B. By definition of cardinalities, this means that
there is no one-to-one correspondence between elements of the two set, so the elements of
A cannot be “enumerated” by elements of B. The proof is by contradiction: assume that
there is such a enumeration. Then, construct an element of A which is not in the list. In our
case, the larger set A will be the set of all languages (for simplicity, over Σ = {0, 1}, but any
alphabet with at least 2 symbols will work). And B will be the set of all Turing machines.

First, let us say how we describe languages. Recall that a characteristic string of a set
is an infinite string of 0s and 1s where, for a given order (usually lexicographic order) of
elements in the set there is a 0 in ith position in the string if ith element in the order is
not in the set and 1 if it is in the set. For example, for a set L = {1, 01} over {0, 1}∗
the characteristic string would be 00101000...00..., since out of the lexicographic ordering
{ε, 0, 1, 00, 01, 10, 11, 000, . . . } of {0, 1}∗ only the 3rd and 5th elements are in L. Thus, for
every language over {0, 1}∗ (or any alphabet with at least 2 elements) there is a (unique)
characteristic string describing this language.

Now, we need to describe Turing machines and state how to enumerate them (show that the
set of all Turing machines is countable). For that, we show that every Turing machine can
be encoded by a distinct finite binary string (and is thus a subset of all finite binary strings,
which is countable since every string can be treated as a binary number with the leading 1
missing). Rather than giving a full proof here, we will refer to the intuition that any ”piece
of code” (including a Turing machine) becomes a different string of 0s and 1s in a computer
memory; whichever encoding achieves that, suffices for our purposes.

Notation 1. We will use the notation 〈M〉 to mean a binary string encoding of a Turing
machine M . We can use the same notation to talk about encodings of other objects, e.g.
〈M,w〉 encodes a pair Turing machine M and a string w; 〈D〉 encoding a finite automaton
D, 〈G〉 for a graph G and so on,

Now, notice that for every Turing machine there is a finite binary description. Treating
this description as a binary number, obtain an enumeration (by a subset of N of all Turing

4

machines. Finally, we can do the diagonalization argument. Start by assuming that it is
possible to enumerate all languages by Turing machines. Write elements of characteristic
strings as columns, and Turing machine descriptions as rows. Put a 1 in cell (i, j) if the
ith Turing machine Mi accepts string number j in the enumeration, and 0 if it does not
accept this string. We obtain a table as in the following example (for different enumerations
of Turing machines the 0s and 1s would be different), and use diagonalization argument to
construct a language not recognized by any Turing machine. Indeed, if that language were
recognized by some Turing machine, say Mk, it would be the string in the kth row of the
table; however, it differs from the diagonal language in kth element.

λ 0 1 00 01 10 11 000 001 ...
M1 0 0 1 1 0 1 1 0 1
M2 1 1 1 1 1 0 0 1 1
M3 1 0 0 0 0 1 1 1 1
M4 1 1 0 1 1 0 0 1 1
M5 0 0 1 1 1 1 1 0 0

...
...

...
...

...
...

...
...

...
...

D 1 0 1 0 0 1 1 0 1

2 Undecidable languages

2.1 Universal Turing machine and undecidability of ATM

In this section we will present a specific, very natural problem and show that it is undecidable.
It will lead us to a whole class of problems of similar complexity.

Definition 16. The language ATM = {〈M,w〉|M is a Turing machine and w is a string
over the input alphabet of M and M accepts w}

That is, the language ATM consists of all pairs M,w of Turing machine + a string in (M).

Theorem 16. ATM is semi-decidable, but not decidable.

Proof. Let us first show that ATM is semi-decidable. That is, there exists a Turing machine
MATM

accepting all and only strings in ATM . Note that if M does not halt on w, neither
does MATM

on 〈M,w〉

MATM
: On input 〈M,w〉

Simulate M on w. If M accepts w, accept. If M rejects w, reject.

5

Note that the above algorithm is essentially an interpreter; that is a program which takes
as input both a program P and an input w to that program, and simulates P on input
w. In this case the program P is given by a Turing machine M . In particular, the Turing
machine ”interpreter” MATM

is known under the name of a Universal Turing Machine.
Turing described a universal Turing machine in some detail in his original 1936 paper, an
ideal which paved the way for later interpreters operating on real computers. This is quite
a meta-mathematical concept, though: a single Turing machine, and a simple one at that,
that could ”do the job” of any other Turing machine provided it is given the description of
the TM it is supposed to simulate and a string to work on.

Now, let us show that ATM is not decidable. Assume for the sake of contradiction that it is,
so there is a Turing machine H that takes as an input 〈M,w〉 and halts either accepting (if
M accepted w) or rejecting (if M did not accept w). Now, define the following language:

Diag = {〈M〉|M is a Turing machine and 〈M〉 /∈ (M)}.

That is, Diag is a language of all descriptions of Turing machines that do not accept a string
that is their own encoding. This is exactly the diagonal language from our diagonalization
table.

Now, notice that H deciding ATM can also be used to decide Diag: H(〈(M, 〈M〉)〉) halts and
accepts if M accepts its own encoding and rejects if M does not accept its own encoding. A
decider HDiag for Diag would run H(〈(M, 〈M〉)〉) and accept if H rejects, reject if H accepts.
But what should it do on input 〈HDiag〉? It cannot accept this input, since that would mean
that HDiag accepts its own encoding, so it should not be in Diag. And it cannot reject its
own encoding, since it would make it a Turing machine not accepting its own encoding and
thus it has to be in Diag. Contradiction.

This contradiction is akin to Russell’s paradox from logic, and other self-referential paradoxes
of the form “I am lying”.

2.2 Beyond semi-decidable

Suppose you are given two languages, L1 and L2. What can you say about a language
L1 ∪ L2 = {x | x ∈ L1 or x ∈ L2? For example, suppose you are interested in all strings
either code Turing machines or are prime numbers when viewed as a binary number; in this
case, your L1 could be all encodings of Turing machines and L2 all prime numbers. Similarly,
you may want to ask about L1∩L2 which contains strings which are in both languages (that
is, encodings of TMs which are primes when viewed as binary numbers, in our example.)
Suppose you know that L1 and L2 are both decidable, or both semi-decidable – what does
it tell you about decidability (semi-decidability) of their union and intersection?

6

Theorem 17. The class of semi-decidable languages is closed under union and intersection
operations.

Proof. Let L1 and L2 be two semi-decidable languages, and let M1,M2 be Turing machines
such that (M1) = L1 and (M2) = L2. We will construct Turing machines ML1∪L2 and ML1∩L2

accepting union and intersection of L1 and L2, respectively.

Consider the union operation first; intersection will be similar. Let x be the input for which
we are trying to decide whether it is in L1 ∪ L2. The first idea could be to try to run M1

on x, and if it does not accept, then run M2 on x. But M1 is not guaranteed to stop on x,
and we would still like to accept x if M2 accepts it. So the solution is to run M1 and M2 in
parallel, switching between executing one or the other. If at some point in the computation
either M1 or M2 accepts, we accept; if neither accepts, can run forever – but this is OK,
because if neither M1 nor M2 accepts x then x /∈ L1 ∪ L2. So we define ML1∪L2 as follows:

ML1∪L2 : On input x
Fori = 1 to ∞

Run M1 on x for i steps. If M1 accepts, accept.
Run M2 on x for i steps. If M2 accepts, accept.

The intersection, in this case, is very similar. The only difference is that we accept at stage
i if not just one, but both M1 and M2 accepted in i steps.

Corollary 18. ATM is not semi-decidable. Moreover, complement of any semi-decidable,
but undecidable language is not semi-decidable.

Proof. Otherwise, running Turing machines MATM
and MATM

simultaneously, as in the proof
above, we could decide ATM . Same holds for any semi-decidable, but undecidable language.

This shows that the class of semi-decidable languages is different (incomparable) from the
class of languages which are complements of semi-decidable ones. Also, there are languages
that are neither. For example, consider a simple language 0 − 1Atm = {〈M,w〉| TM M
accepts 01 and loops on 1w}.

Intuitively, testing if 〈M,w〉 is in the language requires solving an ATM problem and a ATM

problem. The second makes it not semi-decidable, and the first makes its complement not
semi-decidable.

7

A convenient way to talk about complexity of such languages is to look at the quantifiers
present in the language definition, and then use an extension of the verifier characterization of
semi-decidable. First, recall that negation of an existential quantifier is a universal quantifier;
so if a language is defined as ”x for which there exists y such that a condition V (x, y) holds”
(e.g., ”there exists an accepting computation of M on x), then its complement consists of
strings that are not in a valid form (e.g., for ATM , strings that are not 〈M,w〉 for any M,w),
together with strings x in valid form for which condition does not hold for any y (e.g, there
does not exist an accepting computation y of M on w). Moving the negation inside the
quantifier, get that if L = {x|∃yV (x, y)}, then L̄ = {x|∀y¬V (x, y)}. Similarly, the language
0− 1Atm above can be written as {〈M,w〉|∃y1 such that y1 is an accepting computation of
M on 01 and ∀y2, y2 is not a halting computation of M on 1w}.
Definition 17. A language L is called co-semi-decidable if its complement L̄ is semi-
decidable, or, equivalently, if there is a verifier VL which halts on all inputs and such that
for every x, x ∈ L if and only if ∀y, VL accepts 〈x, y〉. Generally, languages that can be
represented by a definition with k alternations of quantifiers are said to be at the kth level
of the arithmetical hierarchy. If the definition starts with ∃, we call that level Σk (not to be
confused with Σ as an alphabet), and if it starts with ∀, then Πk.

For example, a language ETM = {〈M〉 | M is a Turing Machine and (M) = ∅} is co-semi-
decidable: ETM = {〈M〉 | ∀w∀s s is not an accepting computation of M on w}. And a
language All = {〈M〉 |M is a Turing Machine that accepts every input} is in the level Π2 of
the arithmetic hierarchy: it can be written as All = {〈M〉 | ∀w∃s such that s is an accepting
computation of M on w}.

3 Reductions

Now we will proceed to show that many problems are undecidable (and some of them are not
semi-decidable, not co-semi-decidable or even neither semi- nor co-semi-decidabl). Rather
than adapting the proof of undecidability of ATM to other problems, we will use a concept
which is going to be used a lot for the rest of this course: the notion of a reduction. A
reduction is a method of “disguising” one problem as another, so if we can solve the disguised
one it can give us the solution to the original. This method is very useful for proving that
problems are hard: if you can disguise a hard problem as one in hand, then solving this
problem is at least as hard as solving the hard one.

Definition 18. Let L1, L2 ⊆ Σ∗. We say that L1 ≤m L2 if there is a computable function
f : Σ∗ → Σ∗ such that for all x ∈ Σ∗, x ∈ L1 ⇔ f(x) ∈ L2.

Here, we need f to be computable so that it always gives us an answer. The notation ≤m

stands for “many-one reduction” or “mapping reduction”. It is many-one since f may map
many different instances of a problem to a single output.

8

Theorem 19. Let L1, L2 ⊆ Σ∗ such that L1 ≤m L2. Then

1) L1 ≤m L2

2) If L2 is decidable then L1 is decidable.
(And hence, if L1 is not decidable then L2 is not decidable either).

3) If L2 is semi-decidable then L1 is semi-decidable.
(And hence, if L1 is not semi-decidable then neither is L2.)

Proof. 1) Say that L1 ≤m L2 via the computable function f . Then we also have L1 ≤m L2

via f , since x ∈ L1 ⇔ f(x) ∈ L2 implies that x ∈ L1 ⇔ f(x) ∈ L2.

2) Say that L2 = L(M2) where M2 is a Turing machine that halts on every input. Let M
be a Turing machine that computes f . We now define Turing machine M1 as follows.
On input x, M1 runs M on x to get f(x), and then runs M2 on f(x), accepting or rejecting
as M2 does. Clearly M1 halts on every input, and L1 = L(M1), so L1 is decidable.

3) Say that L2 = L(M2) where M2 is a Turing machine. Let M be a Turing machine that
computes f . We now define Turing machine M1 as follows.
On input x, M1 runs M on x to get f(x), and then runs M2 on f(x), accepting or rejecting
as M2 does if and when M2 halts. Clearly L1 = L(M1), so L1 is semi-decidable.

Question: is it true that ATM ≤m ATM? The answer is No: if it were true, then by the first
property above we would have ATM ≤m ATM . But by 3) above, that would mean that ATM

is semi-decidable. But if both a language and its complement are semi-decidable, then, as
we saw in the last class, the language would have to be decidable – which is a contradiction,
since ATM is undecidable. Thus, ATM is not reducible to ATM , and in fact, it is not reducible
to any co-semi-decidable language. So please don’t make a mistake of assuming that you
always prove undecidability by reducing ATM to a problem in hand – sometimes you have to
use ATM , if the problem you are working with is co-semi-decidable. Or, conceptually easier,
if the problem in hand is co-semi-decidable, then work with its complement all the way.

Now we can use this notion of reduction to prove that some languages are undecidable by
reducing languages for which we already know that (such as ATM) to them.

Example 1. Let HaltB = {〈M〉| TM M halts on blank input }. We will show that
ATM ≤m HaltB
Let x ∈ Σ∗, and assume that x = 〈M,w〉 where M is a Turing Machine.
(If x is not of this form, then we can let f(x) be anything not in HaltB. In general we will
assume that the input is “well-formed” since this will always be easy to test for.)

We will let f(x) = 〈M ′〉 where M ′ works as follows on a blank tape (we don’t care what M ′

does on a non-blank tape).

9

M ′ : on input x′

write w on the tape
simulate M running on input w;
if and when M halts and accepts, M ′ halts and accepts;
if and when M halts and rejects, M ′ goes into an infinite loop.

Clearly f is computable. It is also easy to see that x ∈ ATM ⇔ f(x) ∈ HaltB, since
M accepts w ⇔ M ′ halts on blank tape.

Corollary 20. HaltB is not semi-decidable.

Proof. We know HaltB is semi-decidable but not decidable, so HaltB is not semi-decidable.

So far, we saw two semi-decidable undecidable languages, ATM and HaltB, and said that
their complements are examples of co-semi-decidable undecidable languages. Now, let us
look at another example of a co-semi-decidable undecidable language.

Example 2. Let ETM be the language consisting of Turing Machines that do not accept
anything. That is, ETM = {〈M〉 |M is a Turing Machine and (M) = ∅}.

Lemma 21. ETM is co-semi-decidable, but not decidable.

Proof. To show that ETM is co-semi-decidable it is enough to show that the complement of
ETM is semi-decidable. The complement of ETM is ETM = {〈M〉 | M is a Turing Machine
and (M) 6= ∅} ∪ {x ∈ {0, 1}∗ | x 6= 〈M〉 for any Turing machine M}. That is, ETM is a
language of all Turing machines which do accept at least one string, as well as “garbage”
strings that do not encode Turing machines. Here, we again assume that there is a specific
encoding of Turing machines and that given a string it is easy to decide whether it encodes
any Turing machine at all. An encoding we discussed earlier satisfies these conditions.

We will design a Turing Machine METM
such that ETM = L(METM

). METM
behaves as

follows:

METM : on input x
if x is not of the form 〈M〉, accept
for i = 1 to ∞

run M on all inputs of length ≤ i for i steps;
if and when it is discovered that M accepts some input, METM

halts and accepts x.

10

That is, METM
does the following (let Σ = {0, 1}): run M on all inputs of length ≤ 1 for 1

steps; if M accepted ε or 0 or 1 in one transition then accept; otherwise run M on all inputs
of length ≤ 2 for 2 steps; if M accepted one of ε, 0, 1, 00, 01, 10, 11 then accept; otherwise
run M on all inputs of length ≤ 3 for 3 steps; etc.

Clearly, ETM = L(METM
). so ETM is semi-decidable, and thus ETM is co-semi-decidable.

To show that ETM is not decidable we need to show that some undecidable language reduces
to ETM . However, note that we cannot reduce ATM or HaltB to ETM , since they are not
co-semi-decidable, and we just shown that ETM is co-semi-decidable. Instead, we can reduce
a co-semi-decidable language, a complement of a semi-decidable language such as ATM or
HaltB to ETM . Equivalently, we can reduce ATM or HaltB to ETM .

To show that ETM is not decidable we will prove that HaltB ≤m ETM , which is the same
as proving HaltB ≤m ETM . For that, we need to define a reduction function f :

To define a reduction function f , note that we need to handle x 6= 〈M〉 a bit differently, as
ETM does contain all ”garbage strings”, but HaltB does not. Thus, let us define f(x) where
x 6= 〈M〉 to be a Turing machine which is not in ETM . For example, let f(x) = 〈Mloop〉,
where Mloop to be a Turing machine with only one non-halting state q0, and transitions
(q0, a)→ (q0, a, R) for every symbol a. This Mloop will go into an infinite loop on any input,
and thus L(Mloop) = ∅. (We can also use a machine Mreject which immediately rejects every
input (that is, all its transitions are (q0, a) → (qreject, a, R)), or any other specific Turing
machine accepting nothing.)

Now, f(x) =

{
〈Mloop〉 x 6= 〈M〉
〈M ′〉 otherwise, where

M ′ : on input z
erase z and run M on the blank tape;
if and when M halts, M ′ halts and accepts.

Now, 〈M〉 ∈ HaltB if and only if 〈M ′〉 ∈ ETM . This is because no matter what input z to M
is, M ′ will accept this z if and only if M halted when simulated with blank input. Thus, if
M halts on blank input, L(M ′) = {0, 1}∗, and if M does not halt on blank tape, L(M ′) = ∅,
as none of z are accepted.1

Thus, for x = 〈M〉, x ∈ HaltB ↔ x ∈ ETM , and we already saw that for x 6= 〈M〉, for
which x /∈ HaltB, f(x) = 〈Mloop〉 ∈ ETM . So HaltB ≤m ETM , proving that ETM and thus
ETM are undecidable.

1This type of construction of M ′ doing the same on all inputs can help with a surprising number of
problems. I like to call it an “All-or-nothing” reduction. The language of the resulting M ′ is either Σ∗ (and
thus includes every subset one might be interested in) or ∅.

11

You might have noticed that it is possible to reduce ATM to HaltB and ETM as well as the
other way around: thus, the complexity of these three languages is the same. This leads us
to the following definition:

Definition 19. A language L is hard for a class of languages C (under a given type of
reductions) if for every L′ ∈ C, L′ reduces to L. A language L is complete for C if additionally
L ∈ C.

Theorem 22. ATM is complete for the class of semi-decidable languages.

We have showed that ATM is semi-decidable, so it is in the class. To show that every
semi-decidable language reduces to ATM , use the universal Turing machine.

3.1 More examples of reductions

Recall that A ≤m B iff there exists a computable function f such that ∀x ∈ Σ∗A x ∈ A iff
f(x) ∈ B. The notation suggests that “A is at most as hard to solve as B”. Often we use
the reduction to prove hardness for problems of comparable complexity, but sometimes it is
not the case: A can be a lot simpler than B.

Example 3. {uu|u ∈ {0, 1}∗} ≤m ATM

We need to define f(x) =< M,w >. Take a Turing machine, say, which accepts an empty
string and rejects everything else. So the description of M is simple: Q = {q0, qaccept, qreject},
Σ = {0, 1}, Γ = {0, 1, } δ = {(q0, 0) → (qreject, 0, R), (q0, 1) → (qreject, 0, R), (q0,) →
(qaccept, 0, R). Now, define f(x) =< M, ε > if x = uu for some u ∈ {0, 1}∗ and f(x) =<
M, 0 > otherwise. This is a computable function, and it has the desired property that
x ∈ {uu|u ∈ {0, 1}∗} ⇐⇒ f(x) ∈ ATM .

Similarly, for the rest of this lecture we will use reductions to show that certain problems
are even harder than ones we encountered so far. Recall that semi-decidable languages are
ones for which there is a Turing machine which halts (and accepts) on all strings in the
language; for co-semi-decidable languages, there is a Turing machine halting on all inputs
not in the language. However, there are some languages which are neither semi-decidable nor
co-semi-decidable, but belong higher in arithmetic hierarchy, as it is called. The best way to
think about them is using quantifiers: semi-decidable languages correspond to an existential
quantifier (or several existential quantifiers) over a decidable predicate (e.g., ”exists a string
on which there exists an accepting computation” – here, the decidable predicate is the check
that the existential quantifiers indeed guessed a string and a correct computation of this
Turing machine on this string ending in an accept state). Similarly, a co-semi-decidable

12

language can be described using a universal quantifier, just by negating a formula describing
the language (e.g. ”for any string any computation (finite and correct) is not accepting”)
. The languages beyond semi-decidable and co-semi-decidable are, thus, described using a
combination of quantifiers. The number of quantifier alternations corresponds to the levels
of this (strict) hierarchy.

In this lecture we will only talk about languages described with just one quantifier alterna-
tion. But already in this case we cannot talk at all about a Turing machine corresponding
to this language (or its complement).

Example 4. Let L01 = {〈M〉 | M loops on 0 and accepts 1}. Note that the description of
this language has both a universal quantifier (”loop”= ”all finite computations are wrong”)
and an existential quantifier (”accept” = ”exists correct accepting computation”).

To prove that this language is neither semi-decidable nor co-semi-decidable we will use two
reductions. Let us use ATM as the ”hard problem”. To show that L01 is not co-semi-
decidable, we will reduce a not co-semi-decidable ATM to L01. Then, to show that L01 is not
semi-decidable we will reduce a non-semi-decidable ATM to L01.

First we will show that L01 is not co-semi-decidable by showing ATM ≤m L01. For that, by
definition of reduction, we will describe a computable function f(〈M,w〉) = 〈M ′〉 that for
any pair M,w constructs M ′ such that M accepts w if and only if M ′ loops on 0 and accepts
1. Since we are reducing a semi-decidable language (existential quantifier), we will force M ′

to always loop on 0, and will make its behaviour on 1 depend on whether M accepts w.

M’: on input x
for x 6= 0, x 6= 1 it does not matter what M ′ does.

It could accept, or run M on w, anything. Say M ′ rejects.
if x = 0 then loop
if x = 1 then run M on w.
if M accepts, accept. If M rejects, loop (here, reject would also be correct).

Thus, M ′ always loops on 0, and accepts 1 if and only if M accepts w, just as we wanted.
This reduction shows that L01 is at least as hard as ATM , in particular, since ATM is not
co-semi-decidable, then neither is L01.

It remains to show that L01 is not semi-decidable. We will do it by reduction ATM ≤m L01.
That is, we will construct a computable function f which on input 〈M,w〉 produces M ′

which now will loop on 0 and accept 1 if and only if M does not accept w. Another
technicality is that since we are talking about complement of ATM , the language we are
reducing from contains all the ”garbage” – strings that do not encode Turing machines.
That is, ATM = {s|s 6= 〈M,w〉ors = 〈M,w〉 and M does not accept w}. So f(s), for
s 6= 〈M,w〉 would output something in L01: for example a description of a Turing machine

13

with transitions (q0, 1)→ (qaccept) and (q0, 0)→ (qloop, 0, R) where all transitions from qloop
go to qloop. This machine accepts 1 and loops on 0.

M’: on input x
for x 6= 0, x 6= 1 it does not matter what M ′ does.

It could accept, or run M on w, anything. Say M ′ rejects.
if x = 1 then accept
if x = 0 then run M on w.
if M accepts, accept (reject is OK, just don’t loop). If M rejects, loop (here, it has to be loop).

Example 5. Let T be the language of “total” machines, that is, of machines that halt on
every input. T = {〈M〉 |M is a Turing Machine that halts on every input}.
Lemma 23. Neither T nor T is semi-decidable.

Proof. We first show that HaltB ≤m T, implying that HaltB ≤m T, implying that T is not
semi-decidable.

Let f(〈M〉) = 〈M ′〉 (and if input to f is not a proper encoding of a Turing machine, it is an
M ′ that just loops on every input). We will do an “all-or-nothing” reduction again:

M ′ : on input x
erase input and run M on the blank tape.
if M accepts, accept. If M rejects, reject.

We have M halts on the blank tape ⇔ M ′ halts on every input, so we are done.

We next show that HaltB ≤m T, implying that HaltB ≤m T, implying that T is not semi-
decidable. This reduction is a bit tricky.
Assume that the input for HaltB, and assume is well-formed: 〈M〉.
Let f(〈M〉) = 〈M ′〉 where M ′ is as follows.

M ′ :On input x
Simulate M on the blank tape for |x| steps;
if M halts within |x| steps, then M ′ goes into an infinite loop;
if M doesn’t halt within |x| steps, then M ′ halts (and, say, accepts).

Clearly M halts on the blank tape ⇔ M ′ is not a total machine.

Example 6. Let All = {〈M〉 |M is a Turing Machine that accepts every input}.

We will show in one shot that All is neither semi-decidable nor co-semi-decidable by reducing
T to it: T ≤ All. Now, f(〈M〉) = 〈M ′〉 where M ′ is the same as M except every occurrence
of qreject in M is changed to qaccept.

14

