
Midterm study sheet for CS3719

Turing machines and decidability.

• A Turing machine is a finite automaton plus an infinite read/write memory (tape). Formally, a
Turing machine is a 6-tuple M = (Q,Σ,Γ, δ, q0, qaccept, qreject). Here, Q is a finite set of states as
before, with three special states q0 (start state), qaccept and qreject. The last two are called the
halting states, and they cannot be equal. Σ is a finite input alphabet. Γ is a tape alphabet which
includes all symbols from Σ and a special symbol for blank, t. Finally, the transition function is
δ : Q. × Γ → Q × Γ × {L,R} where L,R mean move left or right one step on the tape. Also know
encoding languages and Turing machines as binary strings.

• Equivalent (not necessarily efficiently) variants of Turing machines: two-way vs. one-way infinite
tape, multi-tape, non-deterministic.

• Church-Turing Thesis Anything computable by an algorithm of any kind (our intuitive notion of
algorithm) is computable by a Turing machine.

• A Turing machine M accepts a string w if there is an accepting computation of M on w, that is,
there is a sequence of configurations (state,non-blank memory,head position) starting from q0w and
ending in a configuration containing qaccept, with every configuration in the sequence resulting from
a previous one by a transition in δ of M . A Turing machine M recognizes a language L if it accepts
all and only strings in L: that is, ∀x ∈ Σ∗, M accepts x iff x ∈ L. As before, we write L(M) for the
language accepted by M .

• A language L is called Turing-recognizable (also recursively enumerable, r.e, or semi-decidable) if ∃
a Turing machine M such that L(M) = L. A language L is called decidable (or recursive) if ∃ a
Turing machine M such that L(M) = L, and additionally, M halts on all inputs x ∈ Σ∗. That is, on
every string M either enters the state qaccept or qreject in some point in computation. A language is
called co-semi-decidable if its complement is semi-decidable.

• Semi-decidable languages can be described using unbounded ∃ quantifier over a decidable relation; co-
semi-decidable using unbounded ∀ quantifier. There are languages that are higher in the arithmetic
hierarchy than semi- and co-semi-decidable; they are described using mixture of ∃ and ∀ quantifiers;
the number of alternations of quantifiers is the level in the hierarchy. In particular, the decidable
predicate can be CheckA(M,w, y) which is true iff y encodes an accepting computation of M on w.
CheckR and CheckH are defined similarly for y a rejecting and a halting computation, respectively.

• If a language is both semi-decidable and co-semi-decidable, then it is decidable.

• Universal language ATM = {〈M,w〉 | w ∈ L(M)} = {〈M,w〉 | ∃yCheckA(M,w, y)}. ATM is un-
decidable: proof by contradiction. Examples of undecidable languages: ATM , HaltB, NE (semi-
decidable), Empty (co-semi-decidable), L = {〈M1, w1,M2, w2〉 | w1 ∈ L(M1) and w2 /∈ L(M2)}
Total (neither), three languages from the assignment.

• A many-one reduction: A ≤m B if exists a computable function f such that ∀x ∈ Σ∗
A, x ∈ A ⇐⇒

f(x) ∈ B. To prove that B is undecidable, (not semi-decidable, not co-semi-decidable) pick A which
is undecidable (not semi, not co-semi.) and reduce A to B. To prove that a language L is in a class
(e.g., semi-decidable), give an algorithm (e.g, ML).

1

Regular languages and finite automata:

• An alphabet is a finite set of symbols. Set of all finite strings over an alphabet Σ is denoted Σ∗. A
language is a subset of Σ∗. Empty string is called ε (epsilon).

• Regular expressions are built recursively starting from ∅, ε and symbols from Σ and closing under
Union (R1 ∪R2), Concatenation (R1 ◦R2) and Kleene Star (R∗ denoting 0 or more repetitions of R)
operations. These three operations are called regular operations.

• A Deterministic Finite Automaton (DFA) D is a 5-tuple (Q,Σ, δ, q0, F), where Q is a finite set of
states, Σ is the alphabet, δ : Q×Σ→ Q is the transition function, q0 is the start state, and F is the
set of accept states. A DFA accepts a string if there exists a sequence of states starting with r0 = q0
and ending with rn ∈ F such that ∀i, 0 ≤ i < n, δ(ri, wi) = ri+1. The language of a DFA, denoted
L(D) is the set of all and only strings that D accepts.

• Deterministic finite automata are used in string matching algorithms such as Knuth-Morris-Pratt
algorithm.

• A language is called regular if it is recognized by some DFA.

• A non-deterministic finite automaton (NFA) is a 5-tuple (Q,Σ, δ, q0, F), where Q, Σ, q0 and F
are as in the case of DFA, but the transition function δ is δ : Q × (Σ ∪ {ε}) → P(Q). Here,
P(Q) is the powerset (set of all subsets) of Q. A non-deterministic finite automaton accepts a
string w = w1 . . . wm if there exists a sequence of states r0, . . . rm such that r0 = q0, rm ∈ F and
∀i, 0 ≤ i < m, ri+1 ∈ δ(ri, wi).

• Theorem: For every NFA there is a DFA recognizing the same language. The construction sets
states of the DFA to be the powerset of states of NFA, and makes a (single) transition from every set
of states to a set of states accessible from it in one step on a letter following with all states reachable
by (a path of) ε-transitions. The start state of the DFA is the set of all states reachable from q0 by
following possibly multiple ε-transitions.

• Theorem: A language is recognized by a DFA if and only if it is generated by some regular ex-
pression. In the proof, the construction of DFA from a regular expression follows the closure proofs
and recursive definition of the regular expression. The construction of a regular expression from a
DFA first converts DFA into a Generalized NFA with regular expressions on the transitions, a sin-
gle distinct accept state and transitions (possibly ∅) between every two states. The proof proceeds
inductively eliminating states until only the start and accept states are left.

• Lemma The pumping lemma for regular languages states that for every regular language A there
is a pumping length p such that ∀s ∈ A, if |s| > p then s = xyz such that 1) ∀i ≥ 0, xyiz ∈ A. 2)
|y| > 0 3) |xy| < p. The proof proceeds by setting p to be the number of states of a DFA recognizing
A, and showing how to eliminate or add the loops. This lemma is used to show that languages such
as {0n1n}, {wwr} and so on are not regular.

2

Context-free languages and Pushdown automata.

• A pushdown automaton (PDA) is a “NFA with a stack”; more formally, a PDA is a 6-tuple (Q,Σ,Γ, δ, q0, F)
where Q is the set of states, Σ the input alphabet, Γ the stack alphabet, q0 the start state, F is the
set of finite states and the transition function δ : Q× (Σ ∪ {ε})× (Γ ∪ {ε})→ P(Q× (Γ ∪ {ε})).

• A context-free grammar (CFG) is a 4-tuple (V,Σ, R, S), where V is a finite set of variables, with
S ∈ V the start variable, Σ is a finite set of terminals (disjoint from the set of variables), and R is
a finite set of rules, with each rule consisting of a variable followed by − > followed by a string of
variables and terminals.

• Let A → w be a rule of the grammar, where w is a string of variables and terminals. Then A can
be replaced in another rule by w: uAv in a body of another rule can be replaced by uwv (we say
uAv yields uwv,denoted uAv ⇒ uwv). If there is a sequence u = u1, u2, . . . uk = v such that for all i,

1 ≤ i < k, ui ⇒ ui+1 then we say that u derives v (denoted v
∗⇒ v.) If G is a context-free grammar,

then the language of G is the set of all strings of terminals that can be generated from the start
variable: L(G) = {w ∈ Σ∗|S ∗⇒ w}. A parse tree of a string is a tree representation of a sequence of
derivations; it is leftmost if at every step the first variable from the left was substituted. A grammar
is called ambiguous if there is a string in a grammar with two different (leftmost) parse trees.

• A language is called a context-free language (CFL) if there exists a CFG generating it.

• Theorem Every regular language is context-free.

• Theorem A language is context-free iff some pushdown automaton recognizes it. The proof of one
direction constructs a PDA from the grammar (by having a middle state with “loops” on rules; loops
consist of as many states as needed to place all symbols in the rule on the stack).

• Lemma The pumping lemma for context-free languages states that for every CFL A there is a
pumping length p such that ∀s ∈ A, if |s| > p then s = uvxyz such that 1) ∀i ≥ 0, uvixyiz ∈ A. 2)
|vy| > 0 3) |vxy| < p. This lemma is used to show that languages such as {anbncn}, {ww} and so on
are not regular.

• Theorem There are context-free languages not recognized by any deterministic PDA.

3

