
Exam study sheet for CS3719, Winter 2015

Turing machines and decidability.

• A Turing machine is a finite automaton plus an infinite read/write memory (tape). Formally, a
Turing machine is a 6-tuple M = (Q,Σ,Γ, δ, q0, qaccept, qreject). Here, Q is a finite set of states as
before, with three special states q0 (start state), qaccept and qreject. The last two are called the
halting states, and they cannot be equal. Σ is a finite input alphabet. Γ is a tape alphabet which
includes all symbols from Σ and a special symbol for blank, t. Finally, the transition function is
δ : Q. × Γ → Q × Γ × {L,R} where L,R mean move left or right one step on the tape. Also know
encoding languages and Turing machines as binary strings.

• Equivalent (not necessarily efficiently) variants of Turing machines: two-way vs. one-way infinite
tape, multi-tape, non-deterministic.

• Church-Turing Thesis Anything computable by an algorithm of any kind (our intuitive notion of
algorithm) is computable by a Turing machine.

• A Turing machine M accepts a string w if there is an accepting computation of M on w, that is,
there is a sequence of configurations (state,non-blank memory,head position) starting from q0w and
ending in a configuration containing qaccept, with every configuration in the sequence resulting from
a previous one by a transition in δ of M . A Turing machine M recognizes a language L if it accepts
all and only strings in L: that is, ∀x ∈ Σ∗, M accepts x iff x ∈ L. As before, we write L(M) for the
language accepted by M .

• A language L is called Turing-recognizable (also recursively enumerable, r.e, or semi-decidable) if ∃
a Turing machine M such that L(M) = L. A language L is called decidable (or recursive) if ∃ a
Turing machine M such that L(M) = L, and additionally, M halts on all inputs x ∈ Σ∗. That is, on
every string M either enters the state qaccept or qreject in some point in computation. A language is
called co-semi-decidable if its complement is semi-decidable.

• Semi-decidable languages can be described using unbounded ∃ quantifier over a decidable relation; co-
semi-decidable using unbounded ∀ quantifier. There are languages that are higher in the arithmetic
hierarchy than semi- and co-semi-decidable; they are described using mixture of ∃ and ∀ quantifiers;
the number of alternations of quantifiers is the level in the hierarchy. In particular, the decidable
predicate can be CheckA(M,w, y) which is true iff y encodes an accepting computation of M on w.
CheckR and CheckH are defined similarly for y a rejecting and a halting computation, respectively.

• If a language is both semi-decidable and co-semi-decidable, then it is decidable.

• Universal language ATM = {〈M,w〉 | w ∈ L(M)} = {〈M,w〉 | ∃yCheckA(M,w, y)}. ATM is un-
decidable: proof by contradiction. Examples of undecidable languages: ATM , HaltB, NE (semi-
decidable), Empty (co-semi-decidable), L = {〈M1, w1,M2, w2〉 | w1 ∈ L(M1) and w2 /∈ L(M2)}
Total (neither), three languages from the assignment.

• A many-one reduction: A ≤m B if exists a computable function f such that ∀x ∈ Σ∗A, x ∈ A ⇐⇒
f(x) ∈ B. To prove that B is undecidable, (not semi-decidable, not co-semi-decidable) pick A which
is undecidable (not semi, not co-semi.) and reduce A to B. To prove that a language L is in a class
(e.g., semi-decidable), give an algorithm (e.g, ML).

1

Regular languages and finite automata:

• An alphabet is a finite set of symbols. Set of all finite strings over an alphabet Σ is denoted Σ∗. A
language is a subset of Σ∗. Empty string is called ε (epsilon).

• Regular expressions are built recursively starting from ∅, ε and symbols from Σ and closing under
Union (R1 ∪R2), Concatenation (R1 ◦R2) and Kleene Star (R∗ denoting 0 or more repetitions of R)
operations. These three operations are called regular operations.

• A Deterministic Finite Automaton (DFA) D is a 5-tuple (Q,Σ, δ, q0, F), where Q is a finite set of
states, Σ is the alphabet, δ : Q×Σ→ Q is the transition function, q0 is the start state, and F is the
set of accept states. A DFA accepts a string if there exists a sequence of states starting with r0 = q0
and ending with rn ∈ F such that ∀i, 0 ≤ i < n, δ(ri, wi) = ri+1. The language of a DFA, denoted
L(D) is the set of all and only strings that D accepts.

• Deterministic finite automata are used in string matching algorithms such as Knuth-Morris-Pratt
algorithm.

• A language is called regular if it is recognized by some DFA.

• A non-deterministic finite automaton (NFA) is a 5-tuple (Q,Σ, δ, q0, F), where Q, Σ, q0 and F
are as in the case of DFA, but the transition function δ is δ : Q × (Σ ∪ {ε}) → P(Q). Here,
P(Q) is the powerset (set of all subsets) of Q. A non-deterministic finite automaton accepts a
string w = w1 . . . wm if there exists a sequence of states r0, . . . rm such that r0 = q0, rm ∈ F and
∀i, 0 ≤ i < m, ri+1 ∈ δ(ri, wi).

• Theorem: For every NFA there is a DFA recognizing the same language. The construction sets
states of the DFA to be the powerset of states of NFA, and makes a (single) transition from every set
of states to a set of states accessible from it in one step on a letter following with all states reachable
by (a path of) ε-transitions. The start state of the DFA is the set of all states reachable from q0 by
following possibly multiple ε-transitions.

• Theorem: A language is recognized by a DFA if and only if it is generated by some regular ex-
pression. In the proof, the construction of DFA from a regular expression follows the closure proofs
and recursive definition of the regular expression. The construction of a regular expression from a
DFA first converts DFA into a Generalized NFA with regular expressions on the transitions, a sin-
gle distinct accept state and transitions (possibly ∅) between every two states. The proof proceeds
inductively eliminating states until only the start and accept states are left.

• Lemma The pumping lemma for regular languages states that for every regular language A there
is a pumping length p such that ∀s ∈ A, if |s| > p then s = xyz such that 1) ∀i ≥ 0, xyiz ∈ A. 2)
|y| > 0 3) |xy| < p. The proof proceeds by setting p to be the number of states of a DFA recognizing
A, and showing how to eliminate or add the loops. This lemma is used to show that languages such
as {0n1n}, {wwr} and so on are not regular.

2

Context-free languages and Pushdown automata.

• A pushdown automaton (PDA) is a “NFA with a stack”; more formally, a PDA is a 6-tuple (Q,Σ,Γ, δ, q0, F)
where Q is the set of states, Σ the input alphabet, Γ the stack alphabet, q0 the start state, F is the
set of finite states and the transition function δ : Q× (Σ ∪ {ε})× (Γ ∪ {ε})→ P(Q× (Γ ∪ {ε})).

• A context-free grammar (CFG) is a 4-tuple (V,Σ, R, S), where V is a finite set of variables, with
S ∈ V the start variable, Σ is a finite set of terminals (disjoint from the set of variables), and R is
a finite set of rules, with each rule consisting of a variable followed by − > followed by a string of
variables and terminals.

• Let A → w be a rule of the grammar, where w is a string of variables and terminals. Then A can
be replaced in another rule by w: uAv in a body of another rule can be replaced by uwv (we say
uAv yields uwv,denoted uAv ⇒ uwv). If there is a sequence u = u1, u2, . . . uk = v such that for all i,

1 ≤ i < k, ui ⇒ ui+1 then we say that u derives v (denoted v
∗⇒ v.) If G is a context-free grammar,

then the language of G is the set of all strings of terminals that can be generated from the start
variable: L(G) = {w ∈ Σ∗|S ∗⇒ w}. A parse tree of a string is a tree representation of a sequence of
derivations; it is leftmost if at every step the first variable from the left was substituted. A grammar
is called ambiguous if there is a string in a grammar with two different (leftmost) parse trees.

• A language is called a context-free language (CFL) if there exists a CFG generating it.

• Theorem Every regular language is context-free.

• Theorem A language is context-free iff some pushdown automaton recognizes it. The proof of one
direction constructs a PDA from the grammar (by having a middle state with “loops” on rules; loops
consist of as many states as needed to place all symbols in the rule on the stack).

• Lemma The pumping lemma for context-free languages states that for every CFL A there is a
pumping length p such that ∀s ∈ A, if |s| > p then s = uvxyz such that 1) ∀i ≥ 0, uvixyiz ∈ A. 2)
|vy| > 0 3) |vxy| < p. This lemma is used to show that languages such as {anbncn}, {ww} and so on
are not regular.

• Theorem There are context-free languages not recognized by any deterministic PDA.

Complexity theory, NP-completeness

• A Turing machine M runs in time t(n) if for any input of length n the number of steps of M is at
most t(n) (worst-case running time).

• A language L is in the complexity class P (stands for Polynomial time) if there exists a Turing
machine M , L(M) = L and M runs in time O(nc) for some fixed constant c. The class P is believed
to capture the notion of efficient algorithms.

• A language L is in the class NP if there exists a polynomial-time verifier, that is, a relation R(x, y)
computable in polynomial time such that ∀x, x ∈ L ⇐⇒ ∃y, |y| ≤ c|x|d ∧R(x, y). Here, c and d are
fixed constants, specific for the language.

• A different, equivalent, definition of NP is a class of languages accepted by polynomial-time non-
deterministic Turing machines. The name NP stands for “Non-deterministic Polynomial-time”.

• P ⊆ NP ⊆ EXP, where EXP is the class of languages computable in time exponential in the length of
the input. It is known that P (EXP. All of them are decidable.

3

• Examples of languages in P: all regular and context-free languages, connected graphs, relatively prime
pairs of numbers (and, quite recently, prime numbers), palindromes,etc. Versions of languages such
as SubsetSum, Knapsack, Scheduling with polynomially small numbers. Versions with constant-size
solutions.

• Examples of languages in NP: all languages in P, Clique, Hamiltonian Path, SAT, etc. Technically,
functions computing an output other than yes/no are not in NP since they are not languages.

• Examples of languages not known to be in NP: LargestClique, TrueQuantifiedBooleanFormulas.

• Major Open Problem: is P = NP? Widely believed that not, weird consequences if they were, including
breaking all modern cryptography and automating creativity.

• If P = NP, then can compute witness y in polynomial time. Same idea as search-to-decision reductions.

• Polynomial-time reducibility : A ≤p B if there exists a polynomial-time computable function f such
that ∀x ∈ Σ, x ∈ A ⇐⇒ f(x) ∈ B.

• A language L is N-hard if every language in NP reduces to L. A language is NP-complete it is both in
NP and NP-hard.

• Cook-Levin Theorem states that SAT is NP-complete. The rest of NP-completeness proofs we saw
are by reducing SAT (3SAT) to the other problems (also mentioned a direct proof for CircuitSAT in
the notes).

• Examples of NP-complete problems with the reduction chain:

– SAT ≤p 3SAT

– 3SAT ≤p IndSet ≤p Clique

– Partition ≤p SubsetSum ≤p KnapsackD ≤p SchedulingD.

– Examples from the assignment.

• Steps for proving that a language L is NP-complete:

1. Show that L ∈ NP by using the definition above (∀x, x ∈ L ⇐⇒ ∃y . . .).
2. Show that L is NP-hard.

(a) Choose a known NP-complete language (3SAT, Clique, SubsetSum, etc); the rest of the
proof is showing this language (say, 3SAT) is reducible to L (3SAT ≤p L.)

(b) Main part: describe a polynomial-time computable reduction function f , such that f(x) =
x′ with x ∈ 3SAT ⇐⇒ x′ ∈ L. Note that f does not know if x ∈ 3SAT , and has no power
to determine this. Usually describe f on well-formed inputs (say, for 3SAT ≤p IndSet, just
talk about f(φ) = G′).

(c) Prove that your function works correctly. First part of correctness: show that if x ∈ 3SAT ,
then f(x) ∈ L. That is, show how, given x, x′ and solution S to x (e.g., a satisfying
assignment) to describe a solution S′ to f(x).

(d) Second part of correctness (usually harder). Show that x ∈ 3SAT only if f(x) ∈ L. That
is, show how to reconstruct, given x, f(x) and a solution S′ to f(x), a solution S to x (e.g.,
for 3SAT ≤p IndSet, show how to get a satisfying assignment for φ from an independent
set S′ in G′ = f(φ)).

(e) Finally, briefly explain why f is polynomial-time computable.

• Search-to-decision reductions: given an “oracle” with yes/no answers to the language membership
(decision) problem in NP, can compute the solution in polynomial time with polynomially many
yes/no queries. Similar idea to computing a witness if P = NP.

4

Algorithm design for languages in P

• Greedy algorithms Sort items then go through them either picking or ignoring each; never reverse
a decision. Running time usually O(n log n) where n is the number of elements (depends on data
structures used, too). Often does not work or only gives an approximation; when it works, correctness
proof by induction on the number of steps (i.e., Si is the solution set after considering ith element in
order.)

– Base case: show ∃Sopt such that S0 ⊆ Sopt ⊆ S0 ∪ {1, . . . , n}.
– Induction hypothesis: assume ∃Sopt such that Si ⊆ Sopt ⊆ Si ∪ {i+ 1, . . . , n}.
– Induction step: show ∃S′opt such that Si+1 ⊆ S′opt ⊆ Si+1 ∪ {i+ 2, . . . , n}.

1. Element i+ 1 is not in Si+1. Argue that Sopt does not have it either, then S′opt = Sopt.

2. Element i + 1 is in Si+1. Either Sopt has it (possibly in the different place – then switch
things around to get S′opt), or Sopt does not have it, then throw some element j out of Sopt
and put i+ 1 instead for S′opt; argue that your new solution is at least as good.

• Examples of greedy algorithms: Kruskal’s, Prim’s and Boruvka’s algorithms for Minimal Spanning
Tree, 2-approximation for Knapsack, problems from the assignment.

• Dynamic programming Precompute partial solutions starting from the base cases, keep them in a
table, compute the table from already precomputed cells (e.g., row by row, but can be different).
Arrays can be 1,2, 3-dimensional (possibly more), depends on the problem. Think of ”unwinding” a
backtracking algorithm starting with base cases. Steps of design:

1. Define an array; that is, state what are the values being put in the cells, then what are the
dimensions and where the value of the best solution is stored. E.g.: A(i, t) stores the profit of
the best schedule for jobs from 1 to i finishing by time t, where 1 ≤ i ≤ n, and 0 ≤ t ≤ max di.
Final answer value is A(n,max di).

2. Give a recurrence to compute A from the previous cells in the array, including initialization.

E.g. (longest common subsequence) A(i, j) =

{
A(i− 1, j − 1) + 1 xi = yj

max{A(i− 1, j), A(i, j − 1)} otherwise

3. Give pseudocode to compute the array (usually we omitted it in class).

4. Explain how to recover the actual solution from the array (usually using a recursive PrintOpt()
procedure to retrace decisions).

• Running time a function of the size of the array – might be not polynomial (e.g., scheduling with
very large deadlines)!

• Examples: Scheduling, Knapsack, Longest Common Subsequence, Longest Increasing Subsequence

• Backtracking Used when others don’t work; usually exponential time, but faster than testing all
possibilities. Make a decision tree of possibilities, go through the tree recursively, if some possibilities
fail, backtrack. If find a lot of subcases repeating, try for dynamic programming.

5

