Exam study sheet for CS3719, Winter 2015
Turing machines and decidability.

A Turing machine is a finite automaton plus an infinite read/write memory (tape). Formally, a
Turing machine is a 6-tuple M = (Q,3,T",0, qo, Gaccept, Greject). Here, @ is a finite set of states as
before, with three special states qp (start state), gaccept and greject- The last two are called the
halting states, and they cannot be equal. X is a finite input alphabet. I' is a tape alphabet which
includes all symbols from ¥ and a special symbol for blank, LI. Finally, the transition function is
0:Q.xT' - Q xT' x{L,R} where L, R mean move left or right one step on the tape. Also know
encoding languages and Turing machines as binary strings.

Equivalent (not necessarily efficiently) variants of Turing machines: two-way vs. one-way infinite
tape, multi-tape, non-deterministic.

Church-Turing Thesis Anything computable by an algorithm of any kind (our intuitive notion of
algorithm) is computable by a Turing machine.

A Turing machine M accepts a string w if there is an accepting computation of M on w, that is,
there is a sequence of configurations (state,non-blank memory,head position) starting from gow and
ending in a configuration containing gqccept, With every configuration in the sequence resulting from
a previous one by a transition in § of M. A Turing machine M recognizes a language L if it accepts
all and only strings in L: that is, Vo € ¥*, M accepts z iff € L. As before, we write £L(M) for the
language accepted by M.

A language L is called Turing-recognizable (also recursively enumerable, r.e, or semi-decidable) if 3
a Turing machine M such that £(M) = L. A language L is called decidable (or recursive) if 3 a
Turing machine M such that £(M) = L, and additionally, M halts on all inputs = € ¥*. That is, on
every string M either enters the state guccept OT Greject in some point in computation. A language is
called co-semi-decidable if its complement is semi-decidable.

Semi-decidable languages can be described using unbounded 3 quantifier over a decidable relation; co-
semi-decidable using unbounded V quantifier. There are languages that are higher in the arithmetic
hierarchy than semi- and co-semi-decidable; they are described using mixture of 3 and V quantifiers;
the number of alternations of quantifiers is the level in the hierarchy. In particular, the decidable
predicate can be Checka(M,w,y) which is true iff y encodes an accepting computation of M on w.
Checkpr and Checky are defined similarly for y a rejecting and a halting computation, respectively.

If a language is both semi-decidable and co-semi-decidable, then it is decidable.

Universal language Ary = {(M,w) | w € L(M)} = {{M,w) | 3yChecka(M,w,y)}. Arps is un-
decidable: proof by contradiction. Examples of undecidable languages: Arys, Haltp, NE (semi-
decidable), Empty (co-semi-decidable), L = {(My, w1, Ma,wa) | w1 € L(M;) and we ¢ L(Ms)}
Total (neither), three languages from the assignment.

A many-one reduction: A <, B if exists a computable function f such that Vz € ¥%, x € A <—
f(x) € B. To prove that B is undecidable, (not semi-decidable, not co-semi-decidable) pick A which
is undecidable (not semi, not co-semi.) and reduce A to B. To prove that a language L is in a class
(e.g., semi-decidable), give an algorithm (e.g, Mp).



Regular languages and finite automata:

An alphabet is a finite set of symbols. Set of all finite strings over an alphabet ¥ is denoted X*. A
language is a subset of ¥*. Empty string is called € (epsilon).

Regular expressions are built recursively starting from ), e and symbols from ¥ and closing under
Union (R; U R3), Concatenation (R; o Re) and Kleene Star (R* denoting 0 or more repetitions of R)
operations. These three operations are called regular operations.

A Deterministic Finite Automaton (DFA) D is a 5-tuple (@, X, d, qo, F'), where @ is a finite set of
states, X is the alphabet, § : @ x X — (@ is the transition function, gq is the start state, and F' is the
set of accept states. A DFA accepts a string if there exists a sequence of states starting with rg = ¢q
and ending with r, € F such that Vi,0 < i < n,d(r;,w;) = ri+1. The language of a DFA, denoted
L(D) is the set of all and only strings that D accepts.

Deterministic finite automata are used in string matching algorithms such as Knuth-Morris-Pratt
algorithm.

A language is called regular if it is recognized by some DFA.

A non-deterministic finite automaton (NFA) is a 5-tuple (Q, X, 9, qo, F'), where Q, X, qo and F
are as in the case of DFA, but the transition function § is § : @ x (X U {e}) — P(Q). Here,
P(Q) is the powerset (set of all subsets) of ). A non-deterministic finite automaton accepts a
string w = wj ... w,, if there exists a sequence of states rg,...r, such that ro = qo, r, € F and
Vi, 0 <i<m,rip1 € 6(ry, w;).

Theorem: For every NFA there is a DFA recognizing the same language. The construction sets
states of the DFA to be the powerset of states of NFA, and makes a (single) transition from every set
of states to a set of states accessible from it in one step on a letter following with all states reachable
by (a path of ) e-transitions. The start state of the DFA is the set of all states reachable from gg by
following possibly multiple e-transitions.

Theorem: A language is recognized by a DFA if and only if it is generated by some regular ex-
pression. In the proof, the construction of DFA from a regular expression follows the closure proofs
and recursive definition of the regular expression. The construction of a regular expression from a
DFA first converts DFA into a Generalized NFA with regular expressions on the transitions, a sin-
gle distinct accept state and transitions (possibly () between every two states. The proof proceeds
inductively eliminating states until only the start and accept states are left.

Lemma The pumping lemma for reqular languages states that for every regular language A there
is a pumping length p such that Vs € A, if |s| > p then s = 2yz such that 1) Vi > 0,zy’z € A. 2)
ly| > 0 3) |zy| < p. The proof proceeds by setting p to be the number of states of a DFA recognizing
A, and showing how to eliminate or add the loops. This lemma is used to show that languages such
as {0"1"}, {ww"} and so on are not regular.



Context-free languages and Pushdown automata.

e A pushdown automaton (PDA) is a “NFA with a stack”; more formally, a PDA is a 6-tuple (Q, 3, T, §, qo, F')
where @ is the set of states, X the input alphabet, I" the stack alphabet, gy the start state, F' is the
set of finite states and the transition function § : @ x (XU {e}) x (T U {e}) = P(Q x (T' U {e})).

e A context-free grammar (CFG) is a 4-tuple (V, X, R, S), where V is a finite set of variables, with
S € V the start variable, ¥ is a finite set of terminals (disjoint from the set of variables), and R is
a finite set of rules, with each rule consisting of a variable followed by — > followed by a string of
variables and terminals.

e Let A — w be a rule of the grammar, where w is a string of variables and terminals. Then A can
be replaced in another rule by w: uAv in a body of another rule can be replaced by uwwv (we say
uAv yields vwv,denoted uAv = uwv). If there is a sequence u = uy, us, . . . ux = v such that for all i,
1 <i <k, uj = u;y 1 then we say that u derives v (denoted v = v.) If G is a context-free grammar,
then the language of G is the set of all strings of terminals that can be generated from the start
variable: £(G) = {w € £*|S = w}. A parse tree of a string is a tree representation of a sequence of
derivations; it is leftmost if at every step the first variable from the left was substituted. A grammar
is called ambiguous if there is a string in a grammar with two different (leftmost) parse trees.

e A language is called a context-free language (CFL) if there exists a CFG generating it.
e Theorem Every regular language is context-free.

e Theorem A language is context-free iff some pushdown automaton recognizes it. The proof of one
direction constructs a PDA from the grammar (by having a middle state with “loops” on rules; loops
consist of as many states as needed to place all symbols in the rule on the stack).

e Lemma The pumping lemma for context-free languages states that for every CFL A there is a
pumping length p such that Vs € A, if |s| > p then s = uvayz such that 1) Vi > 0, uv’zy’z € A. 2)
|vy] > 0 3) |vzy| < p. This lemma is used to show that languages such as {a"b"c"}, {ww} and so on
are not regular.

e Theorem There are context-free languages not recognized by any deterministic PDA.
Complexity theory, NP-completeness

e A Turing machine M runs in time ¢(n) if for any input of length n the number of steps of M is at
most ¢(n) (worst-case running time).

e A language L is in the complexity class P (stands for Polynomial time) if there exists a Turing
machine M, L(M) = L and M runs in time O(n¢) for some fixed constant c. The class P is believed
to capture the notion of efficient algorithms.

e A language L is in the class NP if there exists a polynomial-time verifier, that is, a relation R(z,y)
computable in polynomial time such that Yo,z € L <= Jy, |y| < c|lz|* A R(z,y). Here, c and d are
fixed constants, specific for the language.

e A different, equivalent, definition of NP is a class of languages accepted by polynomial-time non-
deterministic Turing machines. The name NP stands for “Non-deterministic Polynomial-time”.

e P C NP C EXP, where EXP is the class of languages computable in time exponential in the length of
the input. It is known that P C EXP. All of them are decidable.



Examples of languages in P: all regular and context-free languages, connected graphs, relatively prime
pairs of numbers (and, quite recently, prime numbers), palindromes,etc. Versions of languages such
as SubsetSum, Knapsack, Scheduling with polynomially small numbers. Versions with constant-size

solutions.

Examples of languages in NP: all languages in P, Clique, Hamiltonian Path, SAT, etc. Technically,
functions computing an output other than yes/no are not in NP since they are not languages.

Examples of languages not known to be in NP: LargestClique, TrueQuantifiedBooleanFormulas.

Major Open Problem: is P = NP? Widely believed that not, weird consequences if they were, including
breaking all modern cryptography and automating creativity.

If P = NP, then can compute witness y in polynomial time. Same idea as search-to-decision reductions.

Polynomial-time reducibility: A <, B if there exists a polynomial-time computable function f such
that Vo € ¥,0 € A < f(z) € B.

A language L is N-hard if every language in NP reduces to L. A language is NP-complete it is both in
NP and NP-hard.

Cook-Levin Theorem states that SAT is NP-complete. The rest of NP-completeness proofs we saw
are by reducing SAT (3SAT) to the other problems (also mentioned a direct proof for CircuitSAT in
the notes).

Examples of NP-complete problems with the reduction chain:

SAT <, 3SAT
3SAT <, IndSet <, Clique
Partition <, SubsetSum <, KnapsackD <, SchedulingD.

Examples from the assignment.

Steps for proving that a language L is NP-complete:

1. Show that L € NP by using the definition above (Vz,xz € L <= Jy...).
2. Show that L is NP-hard.

(a)
(b)

(e)

Choose a known NP-complete language (3SAT, Clique, SubsetSum, etc); the rest of the
proof is showing this language (say, 3SAT) is reducible to L (3SAT <, L. )

Main part: describe a polynomial-time computable reduction function f, such that f(x) =
x' with x € 3SAT <= 2’ € L. Note that f does not know if z € 3SAT, and has no power
to determine this. Usually describe f on well-formed inputs (say, for 3SAT <, IndSet, just
talk about f(¢) = G").

Prove that your function works correctly. First part of correctness: show that if x € 35S AT,
then f(z) € L. That is, show how, given z, 2/ and solution S to x (e.g., a satisfying
assignment) to describe a solution S’ to f(x).

Second part of correctness (usually harder). Show that x € 3SAT only if f(x) € L. That
is, show how to reconstruct, given z, f(z) and a solution S’ to f(z), a solution S to z (e.g.,
for 3SAT <, IndSet, show how to get a satisfying assignment for ¢ from an independent
set " in G' = f(¢)).

Finally, briefly explain why f is polynomial-time computable.

e Search-to-decision reductions: given an “oracle” with yes/no answers to the language membership
(decision) problem in NP, can compute the solution in polynomial time with polynomially many
yes/no queries. Similar idea to computing a witness if P = NP.



Algorithm design for languages in P

e Greedy algorithms Sort items then go through them either picking or ignoring each; never reverse
a decision. Running time usually O(nlogn) where n is the number of elements (depends on data
structures used, too). Often does not work or only gives an approximation; when it works, correctness
proof by induction on the number of steps (i.e., S; is the solution set after considering i*" element in
order. )

— Base case: show 35,,; such that Sy C Sopr € SoU{1,...,n}.
— Induction hypothesis: assume 3S5,,+ such that S; C Spp € S; U{i+1,...,n}.

— Induction step: show 35, such that Si11 C Sp,, € Sip1 U{i+2,...,n}.

1. Element ¢ + 1 is not in S;11. Argue that S,,; does not have it either, then S;pt = Sopt-
2. Element i + 1 is in S;41. Either S,y has it (possibly in the different place — then switch
things around to get S/ pt), or Sypt does not have it, then throw some element j out of Syt

O,
and put 7 + 1 instead for S ,; argue that your new solution is at least as good.

opt)

e Examples of greedy algorithms: Kruskal’s, Prim’s and Boruvka’s algorithms for Minimal Spanning
Tree, 2-approximation for Knapsack, problems from the assignment.

e Dynamic programming Precompute partial solutions starting from the base cases, keep them in a
table, compute the table from already precomputed cells (e.g., row by row, but can be different).
Arrays can be 1,2, 3-dimensional (possibly more), depends on the problem. Think of ”unwinding” a
backtracking algorithm starting with base cases. Steps of design:

1. Define an array; that is, state what are the values being put in the cells, then what are the
dimensions and where the value of the best solution is stored. E.g.: A(i,t) stores the profit of
the best schedule for jobs from 1 to i finishing by time ¢, where 1 < i <n, and 0 < ¢ < maxd;.
Final answer value is A(n, maxd;).

2. Give a recurrence to compute A from the previous cells in the array, including initialization.
E.g. (longest common subsequence) A(i,j) = ( '7 ) o 1=V )

max{A(i —1,7),A(i,j — 1)} otherwise

3. Give pseudocode to compute the array (usually we omitted it in class).

4. Explain how to recover the actual solution from the array (usually using a recursive PrintOpt()
procedure to retrace decisions).

e Running time a function of the size of the array — might be not polynomial (e.g., scheduling with
very large deadlines)!

e Examples: Scheduling, Knapsack, Longest Common Subsequence, Longest Increasing Subsequence

e Backtracking Used when others don’t work; usually exponential time, but faster than testing all
possibilities. Make a decision tree of possibilities, go through the tree recursively, if some possibilities
fail, backtrack. If find a lot of subcases repeating, try for dynamic programming.



