Exam study sheet for CS3719, Winter 2015

Turing machines and decidability.

- A Turing machine is a finite automaton plus an infinite read/write memory (tape). Formally, a Turing machine is a 6-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$. Here, Q is a finite set of states as before, with three special states q_0 (start state), q_{accept} and q_{reject}. The last two are called the halting states, and they cannot be equal. Σ is a finite input alphabet. Γ is a tape alphabet which includes all symbols from Σ and a special symbol for blank, \sqcup. Finally, the transition function is $\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ where L, R mean move left or right one step on the tape. Also know that encoding languages and Turing machines as binary strings.

- Equivalent (not necessarily efficiently) variants of Turing machines: two-way vs. one-way infinite tape, multi-tape, non-deterministic.

- Church-Turing Thesis Anything computable by an algorithm of any kind (our intuitive notion of algorithm) is computable by a Turing machine.

- A Turing machine M accepts a string w if there is an accepting computation of M on w, that is, there is a sequence of configurations (state, non-blank memory, head position) starting from q_0w and ending in a configuration containing q_{accept}, with every configuration in the sequence resulting from a previous one by a transition in δ of M. A Turing machine M recognizes a language L if it accepts all and only strings in L: that is, $\forall x \in \Sigma^*, M$ accepts x iff $x \in L$. As before, we write $L(M)$ for the language accepted by M.

- A language L is called Turing-recognizable (also recursively enumerable, r.e, or semi-decidable) if \exists a Turing machine M such that $L(M) = L$. A language L is called decidable (or recursive) if \exists a Turing machine M such that $L(M) = L$, and additionally, M halts on all inputs $x \in \Sigma^*$. That is, on every string M either enters the state q_{accept} or q_{reject} in some point in computation. A language is called co-semi-decidable if its complement is semi-decidable.

- Semi-decidable languages can be described using unbounded \exists quantifier over a decidable relation; co-semi-decidable using unbounded \forall quantifier. There are languages that are higher in the arithmetic hierarchy than semi- and co-semi-decidable; they are described using mixture of \exists and \forall quantifiers; the number of alternations of quantifiers is the level in the hierarchy. In particular, the decidable predicate can be $\text{Check}_A(M, w, y)$ which is true iff y encodes an accepting computation of M on w. Check_R and Check_H are defined similarly for y a rejecting and a halting computation, respectively.

- If a language is both semi-decidable and co-semi-decidable, then it is decidable.

- Universal language $A_{TM} = \{(M, w) \mid w \in L(M)\} = \{(M, w) \mid \exists y \text{Check}_A(M, w, y)\}$. A_{TM} is undecidable: proof by contradiction. Examples of undecidable languages: A_{TM}, Halt_B, NE (semi-decidable), Empty (co-semi-decidable), $L = \{(M_1, w_1, M_2, w_2) \mid w_1 \in L(M_1) \text{ and } w_2 \notin L(M_2)\}$ Total (neither), three languages from the assignment.

- A many-one reduction: $A \leq_m B$ if exists a computable function f such that $\forall x \in \Sigma^*_A$, $x \in A$ \iff $f(x) \in B$. To prove that B is undecidable, (not semi-decidable, not co-semi-decidable) pick A which is undecidable (not semi, not co-semi.) and reduce A to B. To prove that a language L is in a class (e.g., semi-decidable), give an algorithm (e.g., M_L).
Regular languages and finite automata:

- An **alphabet** is a finite set of symbols. Set of all finite strings over an alphabet Σ is denoted Σ^*. A **language** is a subset of Σ^*. Empty string is called ϵ (epsilon).

- **Regular expressions** are built recursively starting from \emptyset, ϵ and symbols from Σ and closing under Union ($R_1 \cup R_2$), Concatenation ($R_1 \circ R_2$) and Kleene Star (R^* denoting 0 or more repetitions of R) operations. These three operations are called regular operations.

- A **Deterministic Finite Automaton (DFA)** D is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where Q is a finite set of states, Σ is the alphabet, $\delta : Q \times \Sigma \rightarrow Q$ is the transition function, q_0 is the start state, and F is the set of accept states. A DFA accepts a string if there exists a sequence of states starting with $r_0 = q_0$ and ending with $r_n \in F$ such that $\forall i, 0 \leq i < n, \delta(r_i, w_i) = r_{i+1}$. The language of a DFA, denoted $L(D)$ is the set of all and only strings that D accepts.

- A language is called **regular** if it is recognized by some DFA.

- A **non-deterministic** finite automaton (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where Q, Σ, q_0 and F are as in the case of DFA, but the transition function δ is $\delta : Q \times (\Sigma \cup \{\epsilon\}) \rightarrow P(Q)$. Here, $P(Q)$ is the powerset (set of all subsets) of Q. A non-deterministic finite automaton accepts a string $w = w_1 \ldots w_m$ if there exists a sequence of states r_0,\ldots,r_m such that $r_0 = q_0$, $r_m \in F$ and $\forall i, 0 \leq i < m, r_{i+1} \in \delta(r_i, w_i)$.

- **Theorem**: For every NFA there is a DFA recognizing the same language. The construction sets states of the DFA to be the powerset of states of NFA, and makes a (single) transition from every set of states to a set of states accessible from it in one step on a letter following with all states reachable by (a path of) ϵ-transitions. The start state of the DFA is the set of all states reachable from q_0 by following possibly multiple ϵ-transitions.

- **Theorem**: A language is recognized by a DFA if and only if it is generated by some regular expression. In the proof, the construction of DFA from a regular expression follows the closure proofs and recursive definition of the regular expression. The construction of a regular expression from a DFA first converts DFA into a Generalized NFA with regular expressions on the transitions, a single distinct accept state and transitions (possibly \emptyset) between every two states. The proof proceeds inductively eliminating states until only the start and accept states are left.

- **Lemma** The **pumping lemma for regular languages** states that for every regular language A there is a pumping length p such that $\forall s \in A$, if $|s| > p$ then $s = xyz$ such that 1) $\forall i \geq 0, xy^iz \in A$. 2) $|y| > 0$ 3) $|xy| < p$. The proof proceeds by setting p to be the number of states of a DFA recognizing A, and showing how to eliminate or add the loops. This lemma is used to show that languages such as $\{0^n1^n\}, \{ww^r\}$ and so on are not regular.
Context-free languages and Pushdown automata.

- A **pushdown automaton** (PDA) is a “NFA with a stack”; more formally, a PDA is a 6-tuple \((Q, \Sigma, \Gamma, \delta, q_0, F)\) where \(Q\) is the set of states, \(\Sigma\) the input alphabet, \(\Gamma\) the stack alphabet, \(q_0\) the start state, \(F\) is the set of finite states and the transition function \(\delta: Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \to P(Q \times (\Gamma \cup \{\epsilon\}))\).

- A **context-free grammar** (CFG) is a 4-tuple \((V, \Sigma, R, S)\), where \(V\) is a finite set of variables, with \(S \in V\) the start variable, \(\Sigma\) a finite set of **terminals** (disjoint from the set of variables), and \(R\) is a finite set of rules, with each rule consisting of a variable followed by \(- >\) followed by a string of variables and terminals.

- Let \(A \to w\) be a rule of the grammar, where \(w\) is a string of variables and terminals. Then \(A\) can be replaced in another rule by \(w\): \(uAv\) in a body of another rule can be replaced by \(uvw\) (we say \(uAv\) yields \(uvw\), denoted \(uAv \Rightarrow uvw\)). If there is a sequence \(u = u_1, u_2, \ldots u_k = v\) such that for all \(i, 1 \leq i < k, u_i \Rightarrow u_{i+1}\) then we say that \(u\) derives \(v\) (denoted \(u \Rightarrow^* v\)). If \(G\) is a context-free grammar, then the language of \(G\) is the set of all strings of terminals that can be generated from the start variable: \(L(G) = \{w \in \Sigma^*|S \Rightarrow^* w\}\). A **parse tree** of a string is a tree representation of a sequence of derivations; it is **leftmost** if at every step the first variable from the left was substituted. A grammar is called **ambiguous** if there is a string in a grammar with two different (leftmost) parse trees.

- A language is called a **context-free language** (CFL) if there exists a CFG generating it.

- **Theorem** Every regular language is context-free.

- **Theorem** A language is context-free iff some pushdown automaton recognizes it. The proof of one direction constructs a PDA from the grammar (by having a middle state with “loops” on rules; loops consist of as many states as needed to place all symbols in the rule on the stack).

- **Lemma** The **pumping lemma for context-free languages** states that for every CFL \(A\) there is a pumping length \(p\) such that \(\forall s \in A, |s| > p\) then \(s = uvxyz\) such that 1) \(\forall i \geq 0, uv^ixy^iz \in A\). 2) \(|vy| \geq 0\). 3) \(|vxy| < p\). This lemma is used to show that languages such as \{a^n b^n c^n\}, \{ww\} and so on are not regular.

- **Theorem** There are context-free languages not recognized by any deterministic PDA.

Complexity theory, NP-completeness

- A Turing machine \(M\) runs in time \(t(n)\) if for any input of length \(n\) the number of steps of \(M\) is at most \(t(n)\) (worst-case running time).

- A language \(L\) is in the complexity class \(P\) (stands for Polynomial time) if there exists a Turing machine \(M, L(M) = L\) and \(M\) runs in time \(O(n^c)\) for some fixed constant \(c\). The class \(P\) is believed to capture the notion of efficient algorithms.

- A language \(L\) is in the class \(\text{NP}\) if there exists a polynomial-time verifier, that is, a relation \(R(x, y)\) computable in polynomial time such that \(\forall x, x \in L \iff \exists y, |y| \leq c|x|^d \land R(x, y)\). Here, \(c\) and \(d\) are fixed constants, specific for the language.

- A different, equivalent, definition of \(\text{NP}\) is a class of languages accepted by polynomial-time non-deterministic Turing machines. The name \(\text{NP}\) stands for “Non-deterministic Polynomial-time”.

- \(P \subseteq \text{NP} \subseteq \text{EXP}\), where \(\text{EXP}\) is the class of languages computable in time exponential in the length of the input. It is known that \(P \not\subseteq \text{EXP}\). All of them are decidable.
• Examples of languages in \(P \): all regular and context-free languages, connected graphs, relatively prime pairs of numbers (and, quite recently, prime numbers), palindromes, etc. Versions of languages such as SubsetSum, Knapsack, Scheduling with polynomially small numbers. Versions with constant-size solutions.

• Examples of languages in \(\mathbf{NP} \): all languages in \(P \), Clique, Hamiltonian Path, SAT, etc. Technically, functions computing an output other than yes/no are not in \(\mathbf{NP} \) since they are not languages.

• Examples of languages not known to be in \(\mathbf{NP} \): LargestClique, TrueQuantifiedBooleanFormulas.

• Major Open Problem: is \(\mathbf{P} = \mathbf{NP} \)? Widely believed that not, weird consequences if they were, including breaking all modern cryptography and automating creativity.

• If \(\mathbf{P} = \mathbf{NP} \), then can compute witness \(y \) in polynomial time. Same idea as search-to-decision reductions.

• Polynomial-time reducibility: \(A \leq_p B \) if there exists a polynomial-time computable function \(f \) such that \(\forall x \in \Sigma, x \in A \iff f(x) \in B \).

• A language \(L \) is \(\mathbf{N} \)-hard if every language in \(\mathbf{NP} \) reduces to \(L \). A language is \(\mathbf{NP} \)-complete it is both in \(\mathbf{NP} \) and \(\mathbf{NP} \)-hard.

• Cook-Levin Theorem states that \(\mathbf{SAT} \) is \(\mathbf{NP} \)-complete. The rest of \(\mathbf{NP} \)-completeness proofs we saw are by reducing \(\mathbf{SAT} \) (3SAT) to the other problems (also mentioned a direct proof for CircuitSAT in the notes).

• Examples of \(\mathbf{NP} \)-complete problems with the reduction chain:
 - \(\mathbf{SAT} \leq_p 3\mathbf{SAT} \)
 - \(3\mathbf{SAT} \leq_p \mathbf{IndSet} \leq_p \mathbf{Clique} \)
 - \(\mathbf{Partition} \leq_p \mathbf{SubsetSum} \leq_p \mathbf{KnapsackD} \leq_p \mathbf{SchedulingD} \).
 - Examples from the assignment.

• Steps for proving that a language \(L \) is \(\mathbf{NP} \)-complete:
 1. Show that \(L \in \mathbf{NP} \) by using the definition above (\(\forall x, x \in L \iff \exists y \ldots \)).
 2. Show that \(L \) is \(\mathbf{NP} \)-hard.
 (a) Choose a known \(\mathbf{NP} \)-complete language (3SAT, Clique, SubsetSum, etc); the rest of the proof is showing this language (say, 3SAT) is reducible to \(L \) (3SAT \(\leq_p L \)).
 (b) Main part: describe a polynomial-time computable reduction function \(f \), such that \(f(x) = x' \) with \(x \in 3\mathbf{SAT} \iff x' \in L \). Note that \(f \) does not know if \(x \in 3\mathbf{SAT} \), and has no power to determine this. Usually describe \(f \) on well-formed inputs (say, for 3SAT \(\leq_p \mathbf{IndSet}, \) just talk about \(f(\phi) = G' \)).
 (c) Prove that your function works correctly. First part of correctness: show that if \(x \in 3\mathbf{SAT} \), then \(f(x) \in L \). That is, show how, given \(x \), \(x' \) and solution \(S \) to \(x \) (e.g., a satisfying assignment) to describe a solution \(S' \) to \(f(x) \).
 (d) Second part of correctness (usually harder). Show that \(x \in 3\mathbf{SAT} \) only if \(f(x) \in L \). That is, show how to reconstruct, given \(x, f(x) \) and a solution \(S' \) to \(f(x) \), a solution \(S \) to \(x \) (e.g., for 3SAT \(\leq_p \mathbf{IndSet}, \) show how to get a satisfying assignment for \(\phi \) from an independent set \(S' \) in \(G' = f(\phi) \)).
 (e) Finally, briefly explain why \(f \) is polynomial-time computable.

• Search-to-decision reductions: given an “oracle” with yes/no answers to the language membership (decision) problem in \(\mathbf{NP} \), can compute the solution in polynomial time with polynomially many yes/no queries. Similar idea to computing a witness if \(\mathbf{P} = \mathbf{NP} \).
Algorithm design for languages in \(\mathbb{P} \)

- **Greedy algorithms** Sort items then go through them either picking or ignoring each; never reverse a decision. Running time usually \(O(n \log n) \) where \(n \) is the number of elements (depends on data structures used, too). Often does not work or only gives an approximation; when it works, correctness proof by induction on the number of steps (i.e., \(S_i \) is the solution set after considering \(i^{th} \) element in order.)

 - Base case: show \(\exists S_{opt} \) such that \(S_0 \subseteq S_{opt} \subseteq S_0 \cup \{1, \ldots, n\} \).
 - Induction hypothesis: assume \(\exists S_{opt} \) such that \(S_i \subseteq S_{opt} \subseteq S_i \cup \{i + 1, \ldots, n\} \).
 - Induction step: show \(\exists S'_{opt} \) such that \(S_{i+1} \subseteq S'_{opt} \subseteq S_{i+1} \cup \{i + 2, \ldots, n\} \).

 1. Element \(i + 1 \) is not in \(S_{i+1} \). Argue that \(S_{opt} \) does not have it either, then \(S'_{opt} = S_{opt} \).
 2. Element \(i + 1 \) is in \(S_{i+1} \). Either \(S_{opt} \) has it (possibly in the different place – then switch things around to get \(S'_{opt} \)), or \(S_{opt} \) does not have it, then throw some element \(j \) out of \(S_{opt} \) and put \(i + 1 \) instead for \(S'_{opt} \); argue that your new solution is at least as good.

- Examples of greedy algorithms: Kruskal’s, Prim’s and Boruvka’s algorithms for Minimal Spanning Tree, 2-approximation for Knapsack, problems from the assignment.

- **Dynamic programming** Precompute partial solutions starting from the base cases, keep them in a table, compute the table from already precomputed cells (e.g., row by row, but can be different). Arrays can be 1,2, 3-dimensional (possibly more), depends on the problem. Think of ”unwinding” a backtracking algorithm starting with base cases. Steps of design:

 1. Define an array; that is, state what are the values being put in the cells, then what are the dimensions and where the value of the best solution is stored. E.g.: \(A(i, t) \) stores the profit of the best schedule for jobs from 1 to \(i \) finishing by time \(t \), where \(1 \leq i \leq n \), and \(0 \leq t \leq \text{max } d_i \). Final answer value is \(A(n, \text{max } d_i) \).
 2. Give a recurrence to compute \(A \) from the previous cells in the array, including initialization.

 E.g. (longest common subsequence) \(A(i, j) = \begin{cases} A(i - 1, j - 1) + 1 & x_i = y_j \\ \max\{A(i - 1, j), A(i, j - 1)\} & \text{otherwise} \end{cases} \)
 3. Give pseudocode to compute the array (usually we omitted it in class).
 4. Explain how to recover the actual solution from the array (usually using a recursive \(\text{PrintOpt()} \) procedure to retrace decisions).

- Running time a function of the size of the array – might be not polynomial (e.g., scheduling with very large deadlines)!

- Examples: Scheduling, Knapsack, Longest Common Subsequence, Longest Increasing Subsequence

- **Backtracking** Used when others don’t work; usually exponential time, but faster than testing all possibilities. Make a decision tree of possibilities, go through the tree recursively, if some possibilities fail, backtrack. If find a lot of subcases repeating, try for dynamic programming.