
CS 3719 (Theory of Computation and Algorithms) –
Lecture 1

Antonina Kolokolova ∗

January 5, 2015

1 Introduction

The following four problems have been known since ancient Greece:

Problem 1 Is a given number n prime?

Problem 2 What are the prime factors of n? If n is known to be a product of two primes
p and q, what are p and q?

Problem 3 Do given numbers n and m have a common factor (that is, are they relatively
prime or not)?

Problem 4 Given an equation with integer coefficients (e.g., 2x + 5yz = z2, or x + 2 = y),
does it have integer solutions?

Problem 1 was solved by Eratosthenes (via his “Sieve”): Write down all integers less than
or equal to n. Then cross out all even numbers, all multiples of 3, of 5, and so on, for each
prime less than

√
n. If n remains on the list, then n is prime.

Problem 3 was solved by Euclid via what is now known as Euclid’s Algorithm for finding GCD
of m and n: Initially set r0 = m, r1 = n, and i = 1. While ri 6= 0, assign ri+1 = ri−1rem ri
and i = i + 1. Return ri−1. This algorithm uses the fact that if m = k · n + r, and d divides
both m and n, then d also divides r.

The important difference between the two algorithms is that Euclid’s algorithm is very
efficient (polynomial-time in the number of bits needed to write the inputs), whereas Er-
atosthenes’ algorithm is extremely inefficient. The number of operations needed to find out

∗The material in this set of notes came from many sources, in particular “Introduction to Theory of
Computation” by Sipser and course notes of U. of Toronto CS 364. Special thank you to Richard Bajona
for sharing his scribed lecture notes.

1



whether two 256-bit numbers are relatively prime is on the order of 2562, and can be done
very fast (note that at every step ri−1 has at least one fewer bit than ri+1, since the remainder
accounts for less than half of the number, so there are linearly many steps, with one mod
taking at most nm time and series quickly decreasing). On the other hand, Eratosthenes’s
sieve would require the number of operations on the order of 2256; for comparison, the number
of atoms in our universe is estimated to be around 2200.

Very recently, in 2002, there was a major breakthrough: an efficient algorithm for primality
testing (problem 1) was found by Manindra Agrawal and his two undergraduate students,
Kayal and Saxena. So it has taken more than two thousand years to design an efficient
algorithm for the problem. Although the notion of efficiency as we know it (time polynomial
in the size of the input) appeared only in 1960s, in the work of Allan Cobham.

For problem 2 we do not know an efficient solution. Finding such a solution will have
serious consequences for cryptography: one of the assumptions on which security of the RSA
protocol is based is that factoring is not efficient, so factoring large numbers is hard.

Problem 4, the Diophantine equations problem, turns out to be even more difficult than
factoring numbers. In 1900, Hilbert proposed several problems at the congress of mathe-
maticians in Paris that he considered to be the main problems left to do in mathematics;
the full list contained 23 problems. You might remember problems number 1 (is there a
set of cardinality strictly between countable and reals?) and number 2 (prove that axioms
of arithmetic are consistent). His 10th problem was stated as ”find a procedure to deter-
mine whether a given Diophantine equation has a solution”. But in 1970, Yuri Matiyasevich
showed, based on previous work by Julia Robinson, Martin Davis and Hilary Putnam, that
such a procedure cannot possibly exist. So this problem is significantly harder than figuring
out a factorization of a number: no amount of brute force search can tell if some of such
equations have an integer solution.

In this course, we will explore what does it mean for a computational problem to be solvable
and efficiently solvable. We will consider several definition of computation and compare
their strength, go over some techniques for showing that problems are not solvable at all or
likely not solvable significantly better than in a brute-force way, and study some methods
for designing algorithms for computationally easier problems.

2


