
CS 3719 (Theory of Computation and Algorithms) –
Finite automata and regular languages

Lectures 5-7

Antonina Kolokolova∗

January 21, 2011

1 Finite Automata

Let us now introduce a model of computation, called Finite Automata, which corresponds
to a Turing machine without a tape. This is a pretty simple model, in that it will have no
memory, and just process the input string symbol by symbol.

Example 1. Most of you have seen buses where you open the door by waving a hand in
front of it. The door would not open, though, if the bus is moving, and would close when
the motion sensor stops receiving the “wave” signal.

Let’s describe a possible controller for a door like this. It will have two states: open and
closed, and 4 pairs of possible events (both moving and waving, waving not moving, moving
not waving and neither). Also, we will require that at the power-up the door is closed, and
it is closed at power-down.

Both W., not M M., not W Neither
Open Closed Open Closed Closed
Closed Closed Open Closed Closed

no W andM, or both, or none

OPENCLOSED

W and no M

W and no M

no W andM, or both, or none

The circles denote the states, and the arrows denote inputs. The unlabeled arrow pointing
to the “Closed” state denotes that the controller starts when the door is closed; it is a
double-circle to denote that it is also a final state before power-down.

∗The material in this set of notes came from many sources, in particular “Introduction to Theory of
Computation” by Sipser and course notes of U. of Toronto CS 364.

1

Note that this kind of controller does not have any memory: all it does is look at the input
symbol by symbol, and change its state accordingly. It would only have finitely many states.

Here is another example of a problem that can be solved by a similar kind of device.

Example 2. The following finite automaton re-
ceives a string of bits (0 and 1), and should finish
in a final state (double-circle) if and only if the
string contains an odd number of 1s.

0

ODDEVEN

1

0

1

More precisely, we define (deterministic) Finite Automata as follows. This is very similar
to the definition of a Turing machine, except as there is no tape, there is no tape alphabet
and in transition there is nothing being written and no movement. Also, rather than having
dedicated accept and reject states, every state of the automaton is either an accepting or a
rejecting, and it accepts iff after reading the last symbol of the input it is in accepting state.

Definition 7. A (deterministic) finite automaton (a DFA) is a 5-tuple (Q,Σ, δ, q0, F), where

1) Q is a finite set of states.

2) Σ is the alphabet (a finite set of symbols).

3) δ : Q× Σ→ Q is the transition function (pronounced as “delta”).

4) q0 ∈ Q is the start state

5) F ⊆ Q is the set of accept (final) states.

We say that a DFA accepts a string w = {w0 . . . wn−1} if there exists a sequence of n states
r0, . . . , rn such that r0 = q0, rn ∈ F and ∀i, 0 ≤ i < n, δ(ri, wi) = ri+1. A DFA accepts
(recognizes) a language L if it accepts every string in L, and does not accept any string not
in L. A language is called a regular language if it is recognized by some finite automaton.

So to fully specify a finite automaton it is sufficient to say which
states it is composed of (Q), what are the possible input symbols
(Σ), where to start (q0), where to end on good strings (F) and, the
main part, what are the arrows and labels on them (δ). In example 2,
Q = {even, odd}, Σ = {0, 1}, q0 = even, F = {odd} and δ is encoded
by the following table:

0 1
even even odd
odd odd even

For example, on the string 1011001 it will go through the sequence of states “even, odd,
odd, even, odd, odd, odd, even”, ending in a non-accepting state; but a string 101100 it will
accept. So this automaton accepts a language of all strings over 0,1 in which the number of
1s is even.

2

Example 3. This automaton recognizes the
language of all strings that contain 00.

0,1

1

q0 q1 q2

0

1

0

Example 4. This automaton recognizes the
language of all strings that start with 00.

0,1

q0 q1 q2

0 0

0,1

1
1

1.1 String matching

One area where automata have found much use is in string matching. Here, the pattern
string (of length m is encoded by an automaton, which then gets the text (of usually much
larger length n) as an input; the automaton should end in an accepting state if and only
if this pattern occurs in the text. Such an algorithm runs very fast: in time O(n|Σ|) plus
time it takes to build an automaton: easy O(m3) (ignoring |Σ|); can be as efficient as .O(m).
In particular, Knuth-Morris-Pratt algorithm you have seen in CS 2711 can be viewed as
constructing a DFA in its preprocessing stage: think symbols of the pattern corresponding
to the states q1 . . . qm, matching transitions going qi to qi+1 and the partial match table
encoding non-matching transitions.

Example 5. Suppose you want to match a string “3719” in a file (here, take Σ to be all
symbols that can occur in a text file). It is enough to feed the text from the file to this DFA.

3

q0 q1 q2 q3 q4

ΣΣ

3 7 1 9

−{3}

Σ

Σ

Σ

−{3,7}

−{1,3}
−{3,9}

3

3

Example 6. To make it more interesting, let’s build an automaton for a string with repeated
letters, for the same Σ. Notice how backward transitions correspond to the “suffix matches
the prefix” jumps in the KMP algorithm.

−{1,3}

q0 q1 q2 q3 q4

ΣΣ

3 3 1 1

3

3−{3}

−{3}Σ

Σ −{1,3}
Σ

3

2 Regular expressions

Now, we will try to characterize languages (problems) that can be solved by DFAs. We
will show that it is exactly the class of languages that can be described by regular expres-
sions. Most of you have done Google searches for expressions like “MUN AND (CS3719 OR
COMP3719)” to find pages that contain the string MUN and either the string CS3719 or the
string COMP3719. Also, most of you have searched for a file with, say, 3719 in the name on
a UNIX system by doing ls ‘‘*3719*’’. In both cases you were using regular expressions
to describe a set of strings you needed.

Formally, regular expressions are defined by the following recursive definition: R is a regular
expression (over Σ) if R is one of the following:

1) A letter from an alphabet: a ∈ Σ, for some a (here, a is a generic name for a letter,
does not have to be the symbol “a”).

2) An empty string ε.

3) The empty set ∅.

4) A union of two regular expressions (R1 ∪R2) (that is, all strings that either match R1

or match R2, or both).

5) A concatenation of two regular expressions R1 ◦ R2 (that is, all strings that can be
formed by writing a string of R1 followed by a string of R2).

6) A Kleene star R∗1, which is zero or more concatenated strings from R1. This is the
same ∗ as in Σ∗, where it means zero or more letters from Σ.

And only strings formed in this way are regular expressions. We would say a string “matches”
a regular expression if it is a member of a language of this regular expression.

For example, suppose we want to define a set of all binary numbers (that is, Σ = {0, 1})
divisible by 4 by a regular expression. To make it more interesting, say we only want to
list numbers starting with a 1 (e.g., we only consider strings starting with 1 as valid natural
numbers for this example). Then we can do it as follows.

• 0 is a regular expression; so is 1, by rule 1.

• Then 00 is a regular expression by rule 5

• And (0 ∪ 1) is a regular expression by rule 4.

• By rule 6, (0 ∪ 1)∗ is a regular expression (in fact, it matches all strings in Σ∗.)

4

• Finally, 1(0 ∪ 1)∗00 is a regular expression by two applications of rule 5

You can check yourself that the strings that are matched by this regular expression are
binary numbers starting with 1 and ending with 00, that is, divisible by 4. For example, 100
is matched, and so is 10010101010100, but not 01100 or 1001. This language is infinitely
countable: there are infinitely many numbers divisible by 4. Or, alternatively, you can see
that there is a string in the regular expression for any string in Σ∗ = {0 ∪ 1}∗.

3 Regular Languages

Recall that a language is recognized by a finite automaton if each string in the language and
no string not in the language are accepted by this automaton. There can be several different
automata accepting the same language.

Definition 8. A language is called regular if there exists a finite automaton that accepts it.
We will use the notation L(N) to mean the language accepted by the automaton N .

We will show soon that this is the same “regular” as in “regular expressions”. In particular,
the operations used to build regular expressions inductively out of smaller ones are called
regular operations:

Definition 9. Let A,B be languages. We define three regular operations on them:

• Union A ∪B = {x|x ∈ A or x ∈ B}

• Concatenations A ◦B = {xy|x ∈ A and y ∈ B}

• Star A∗ = {x1 . . . xk|k ≥ 0 and ∀1 ≤ i ≤ k, xi ∈ A}

We are building up to showing that the class of languages expressible by regular expressions
is the same as the class of languages accepted by finite automata: that is, in both cases it is
the class of regular languages.

Theorem 7. The class of regular languages is closed under regular operations.

Corollary 8. For every regular expression, there is a finite automaton that recognizes the
same language as this regular expression generates.

We will postpone the proof of this theorem and the corollary slightly, to introduce a version
of finite automata which will make the proofs easier. This version looks more powerful;
however, we will show that the class of languages recognized by this model is the same as
the class of languages recognized by automata we considered so far (although not efficiently).

5

Definition 10. A non-deterministic finite automaton (NFA) is a 5-tuple (Q,Σ, δ, q0, F),
where Q, Σ, q0 and F are as in the case of deterministic finite automaton (Q is the set of
states, Σ an alphabet, q0 is a start state and F is a set of accepting states), but the transition
function δ is δ : Q × (Σ ∪ {ε}) → P(Q). Here, P(Q) is the powerset (set of all subsets) of
Q.

A non-deterministic finite automaton accepts a string w = w1 . . . wm if there exists a se-
quence of states r0, . . . rm such that r0 = q0, rm ∈ F and ∀i, 0 ≤ i < m, ri+1 ∈ δ(ri, wi).

There are two differences between this definition of δ and the deterministic case. First, δ
gives a (possibly empty) set of states, as opposed to exactly one state. Second, there can
be a transition without seeing any symbols, on empty string ε. Also, now the acceptance
condition is that there exists a good sequence of states leading to acceptance: there can be
many computational paths, some of which would lead to rejecting states, some would “die”
with no next state to go to, and, if the string is in the language, at least one will finish in
an accepting state.

Example 7. Consider the following two automata accepting a language of all strings ending
with 00. The first one is deterministic, the second non-deterministic. Notice how in the
non-deterministic automaton there are two arrows on 0 from q0 (so, δ(q0, 0) = {q0, q1}), no
arrows on 1 from q2 and no arrows at all from q2 (so δ(q2, 0) = δ(q2, 1) = ∅.) This example
does not have ε-arrows.

DFA

1

q0 q1 q2

0

1

0

1

0

q0 q1 q2

0

0,1

0

NFA

Consider possible executions of this NFA on string 101000. From q0 on 1 there is just one
choice: stay at q0. On the second symbol, there are two choices: stay at q0 or go to q1. The
computational branch that goes to q1 dies at the next step: there is nowhere to go from q1
on 1. The first computational branch survives, there the automaton stays in q0 on the 3rd
symbol. On the 4th symbol, 0, there is a choice again: you can see that moving to q1 and
then to q2 will make it get stuck on the last 0. Similarly, not going to q1 on the 5th symbol
will make it finish in a reject state (either q0 or q1). Finally, an accepting sequence of states
for string 101000 is: q0, q0, q0, q0, q0, q1, q2.

Now, with this definition of NFA, we are ready to prove the Corollary 8.

Proof. Recall the recursive definition of regular expressions: there were three base cases,
and for the recursive step the three rules were union, concatenation and star. The theorem
7 (which we will prove later) gives us the recursive step. More precisely, if regular expres-
sions R1 and R2 generate the same languages as recognized by finite automata N1 and N2,

6

respectively, then the closure under union operation gives us an automaton for a language
L(N1) ∪ L(N2), which is the same set of strings as R1 ∪R2. Similarly, the theorem gives us
automata for recognizing R1 ◦R2 and R∗1 given automata recognizing R1 and R2. So all that
is left to prove is the base case.

There are three parts of the base case, and for each we will construct a NFA accepting it.

1) R = a, for some a ∈ Σ. Take the NFA

a

.

2) R = ε Define the corresponding NFA as .

3) R = ∅ Then, take an NFA accepting nothing. .

The proof follows by structural induction. Formally, suppose R is a regular expression; we
will show how to construct a NFA recognizing the same language. If R is of the form a
or ε or ∅ then use the corresponding automaton from the previous paragraph. Otherwise
R = R1 ∪ R2 or R = R1 ◦ R2 or R = R∗1. By induction hypothesis, there exist NFAs N1

and N2 recognizing languages of R1 and R2 respectively. Now, by the theorem 7 there is an
NFA N with L(N) = L(N1) ∪ L(N2). Thus, a regular expression R = R1 ∪ R2 generates a
language L(N). The arguments for R1 ◦R2 and R∗1 similarly follow from theorem 7.

To give an intuition for the proof of theorem 7 for the case of union, as well as illustrate the
use of ε-arrows, consider the following example.

Example 8. Consider the language of strings over {0, 1} starting with either 00 or 11. Here,
the ε-arrows at the beginning allow us to start either at the automaton recognizing strings
starting with 00 or at the automaton recognizing strings starting with 11.

ε

0 0

1

0,1

q1 q2 q3

q0

q5q4

1

q6

0,1

ε

.

7

4 Equivalence of NFAs and DFAs

When we defined regular languages, we said that a language is regular if it is accepted by
some finite automaton, without really specifying whether it is a DFA or an NFA. It is clear
that if a language can be recognized by some DFA can also be recognized an NFA, at least
because DFAs are a special case of NFAs. But what about the other direction, are there
languages that can be done by NFAs but not DFAs? In general, does non-determinism make
the model of computation more powerful?

In this section we will show how to simulate NFAs by DFAs, althought the simulation is not
very efficient. To the most general question, about the power of non-determinism, there is no
single answer: sometimes non-determinism does not help much (as for the finite automata or
Turing machines), sometimes it allows the model to recognize languages it would not be able
to recognize without (that will be the case for pushdown automata, which we will talk about
next week) and sometimes the answer is not known: a major, literally million-dollar, problem
P vs. NP asks whether non-deterministic Turing machines can be simulated efficiently by
deterministic ones. We will talk about this problem at length at the last part of the course.

Theorem 9. For every NFA N there is a DFA D such that L(N) = L(D).

Corollary 10. The class of languages accepted by NFAs is the same as the class of languages
accepted by NFAs (regular languages.)

Proof. The idea of the construction is as follows. Think of tracking an execution of N on
a string. On every step of the NFA, maintain a set of states in which N could be at the
moment. Then, on a next symbol, see where it is possible to get from any of the current
states on that symbol. If there are ε-transitions, then every time after computing the states
reachable from the current also add to the set any states reachable from the computed ones
on ε-arrows.

Example 9. Here is an example of an NFA and a corresponding DFA. Consider an execution
of this NFA on a string 1101. The first state is q0, after that, on seeing a 1, it can go to
either q0 or q1; record it as being in a state {q0, q1}. After seeing another 1, it can again go
to either q0 or q1 already from q0, so both states are possible. From there it will go back to
q0 on a 0 since there are no transitions from q1 on 0, and from q0 on 0 N stays in q0. And,
finally, it will go again to {q0, q1} on 1. Since this means it is possible to end in an accepting
state q1, we treat {q0, q1} as an accepting state.

8

DFA

O

q0

1

0,1

q1

NFA

q0 q1

q1

q0

0

0,1

0,1

0

1

1

/

To formalize this intuition, let’s describe D(Q′,Σ, δ′, q0, F}. We will have to talk about sets
of states reachable from a given set by following ε-arrows: let’s call, for a set of states Qi, a
E(Qi) = {q ∈ Q|∃q′ ∈ Q such that q is reachable from q′ by following ε-arrows}.

• Set Q′ = P(Q), that is, a set of all subsets of Q. Thus, this conversion is not very
efficient: the new DFA is exponentially larger than the original NFA.

• The new start state will be all states accessible from q0 by following ε-arrows. That is,
q′0 = E({q0}).

• The final states of D are all sets that contain at least one final state of N . That is,
F ′ = {Qi|∃q ∈ F, q ∈ Qi}.

• Finally, we need to define the transition function of D, δ′(Qi, a). It should be a set of
states reachable from states in Qi by doing δ-transitions on a, together with everything
else that can be reached from them by ε-arrows. More formally, δ′(Qi, a) = {q|q ∈
E(δ(q′, a)) for some q′ ∈ Qi}.

Example 10. Here is an example of an NFA with ε-transitions and a corresponding DFA.
Note that the start state is now {q0, q1}, since q1 is reachable from q0 by an ε-transition.
Also, q1 is reachable from q1 two different ways: by the self-loop, and by going to q0 and
back on ε-arrow.

9

0,1

O

q0

ε

q1

NFA

q0 q1

q1

q0

0,1

1

DFA

0,1

1

0

1

0

/

Note that in these two examples there are groups of states that are not reachable from
the start. If this is the case, then we often just draw the part of the automaton which is
reachable, ignoring the states we never get to.

5 Nonregular languages

A natural question to ask is whether there are languages that are not regular, that is, whether
any language (any subset of Σ∗ for a finite Σ) can be described by a regular expression. In
this lecture, we will show some examples of languages for which it is not possible to build a
finite automaton or write a regular expression; we will call such languages nonregular.

How would one go about proving that some language is not regular? We cannot check all
possible finite automata to make sure that none of them accepts the language, there are
infinitely many automata to check. So instead we will identify a property that all regular
languages satisfy, and show languages that do not satisfy this property.

Example 11. Consider the automaton accepting all strings with the number of 1s divisible
by 3. There is one property you can notice about this automaton: if you take a string it
accepts, and repeat any substring of it in which the number of 1s is divisible by 3, you again
obtain a string in the language. For example, if 111011010 is in the language, so is 11 1011
1011 010, as well as 111 111 011010. If you look at the automaton, the reason becomes
clear: repeating such a substring the automaton returns to the same state. In case of 11
1011 1011 010, the automaton was in the state q2 after seeing the first 11, and it is again in
q2 after seeing 1011, and back to q2 after seeing the second block of 1011... and after that
its execution on the remaining 010 is the same as it would be without the additional 1011.

This observation will lead us to a property that holds for all regular languages.

Lemma 11 (Pumping lemma). If A is a regular language, then there exists a number p ∈ N
called “pumping length” such that for any string s ∈ A, if |s| ≥ p then s = xyz, where

10

1) ∀i ≥ 0, xyiz ∈ A. That is, if s is in A than so is any string obtained from s by repeating
the block y 0 or more times.

2) |y| > 0. Otherwise the lemma would be trivial: you can always repeat an empty sub-
string as many time as you like.

3) |xy| ≤ p. This property comes out of the proof of the lemma and helps with some
nonregularity proofs.

Proof. Since A is regular, there exists a DFA D, L(D) = A. Suppose D has p states; this
number will be the pumping length.

Consider any string s of length at least p. Since during a computation on a string of length
p the DFA goes through a sequence of p + 1 states, by the Pigeonhole Principle at least
one state in this sequence repeats. Now, take y to be the substring between the first two
repetitions of the first repeating state. Then repeating this y 0 or more times does not
change the acceptance of s by D: just add or remove the sequence of states of D on y from
the corresponding position in the sequence of states. The |y| > 0 because this is a DFA with
no ε-transitions. And the last condition is satisfied because there are at most p states the
DFA can go through before repeating a state, again by the Pigeonhole Principle: here, x is
a string from the start of s to the first occurrence of the first repeating state.

Now we will use this lemma to show that several languages are not regular; in particular, we
will show that “counting” cannot be done by finite automata.

Example 12. The language A = {0n1n} is not regular.

For the sake of contradiction, suppose that it is regular. Then there exists a natural number
p such that any string longer than p satisfies the condition of the pumping lemma. Here, we
will present a string that is in A, but cannot be “pumped”.

Consider s = 0p1p. Clearly, |s| ≥ p. By the lemma, then s = xyz such that ∀i ≥ 0, xyiz ∈ A.
There are three possibilities: y can consist just of 0s, or just of 1s, or of a mix of 0s and
1s. In the first case, repeating y would increase the number of 0s, but not the number of 1s,
so xyyz /∈ A. Similarly, if y consists of only 1s, repeating it would make a string not in A
Finally, suppose that y consists of some 0s followed by some 1s. But then the string xyyz
has some 1s before 0s, which again makes it not in the language.1

Therefore, s cannot be written as s = xyz in a way that satisfies the pumping lemma. Thus,
the language {0n1n} is not regular.

1Note that the last two cases can be also eliminated by using the |xy| < p condition of the pumping
lemma.

11

Example 13. The language A = {ww|w ∈ {0, 1}∗} is not regular. This also holds for any
other Σ with |Σ| > 1.

Again, assume for the sake of contradiction that A is regular; then by the pumping lemma
there exists a pumping length p, such that for any s ∈ A, |s| > p, s = xyz where y’s can be
repeated.

Take s = 0p10p1. By the 3rd condition of the pumping lemma, |xy| ≤ p. And therefore the
repeating part y would consist of only 0s. But adding 0s in the first half of the string will
make the first half different from the second half, and thus not in the language.

Note, by the way, that if we would have taken a string s = 0p0p, then the argument would
not work: take a y of a small even length, and it could be pumped indefinitely. So the choice
of a string matters: it is not that we need to show that every string in the language cannot
be pumped, we just need to present one such string.

Example 14. The language A = {w|w ∈ {0, 1}∗ contains the same number of 0s and 1s }
is not regular.

Assume for the sake of contradiction that A is regular; let p be the pumping length. Take
s = 0p1p, like in the first example. But now the case of “mixed 0s and 1s” does not apply:
such a string would still be in the language. Here, we do need to refer to the |xy| ≤ p
condition of the pumping lemma: by that condition, y would have to contain only 0s, so
repeating y would make a string with more 0s than 1s.

Also note that here taking a string, for example, (01)p would not be useful: this string can
be pumped.

Example 15. The language A = {0i1j|i > j} is not regular.

(Again assume A is regular and get p from the pumping lemma). Take a string s = 0p+11p.
Now saying that |xy| ≤ p and so y consists of just 0s does not help: increasing the number
of 0s would give us a string in the language. However, notice that in the first condition of
the pumping lemma i ≥ 0. That is, a string xz with no repetitions of y should still be in the
language (think of skipping the first loop on that first repeating state of the automaton).
However, here if we will remove even one 0 from the string the resulting string will not be
in the language. Therefore, this language is also not regular.

12

