A Turing machine is a finite automaton with an infinite memory (tape). Formally, a Turing machine is a 6-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}})$. Here, Q is a finite set of states as before, with three special states q_0 (start state), q_{accept} and q_{reject}. The last two are called the halting states, and they cannot be equal. Σ is a finite input alphabet. Γ is a tape alphabet which includes all symbols from Σ and a special symbol for blank, \sqcup. Finally, the transition function is $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ where L, R mean move left or right one step on the tape. Also know encoding languages and Turing machines as binary strings.

Equivalent (not necessarily efficiently) variants of Turing machines: two-way vs. one-way infinite tape, multi-tape, non-deterministic.

Church-Turing Thesis Anything computable by an algorithm of any kind (our intuitive notion of algorithm) is computable by a Turing machine.

A Turing machine M accepts a string w if there is an accepting computation of M on w, that is, there is a sequence of configurations (state, non-blank memory, head position) starting from q_0w and ending in a configuration containing q_{accept}, with every configuration in the sequence resulting from a previous one by a transition in δ of M. A Turing machine M recognizes a language L if it accepts all and only strings in L: that is, $\forall x \in \Sigma^*, M$ accepts x if $x \in L$. As before, we write $L(M)$ for the language accepted by M.

A language L is called Turing-recognizable (also recursively enumerable, r.e, or semi-decidable) if \exists a Turing machine M such that $L(M) = L$. A language L is called decidable (or recursive) if \exists a Turing machine M such that $L(M) = L$, and additionally, M halts on all inputs $x \in \Sigma^*$. That is, on every string M either enters the state q_{accept} or q_{reject} in some point in computation. A language is called co-semi-decidable if its complement is semi-decidable. Semi-decidable languages can be described using unbounded \exists quantifier over a decidable relation; co-semi-decidable using unbounded \forall quantifier.

There are languages that are higher in the arithmetic hierarchy than semi- and co-semi-decidable; they are described using mixture of \exists and \forall quantifiers and then number of alternation of quantifiers is the level in the hierarchy.

Decidable languages are closed under intersection, union, complementation, Kleene star, etc. Semi-decidable languages are not closed under complementation, but closed under intersection and union. If a language is both semi-decidable and co-semi-decidable, then it is decidable.

Universal language $A_{TM} = \{\langle M, w \rangle \mid w \in L(M)\}$. Undecidability; proof by diagonalization and getting the paradox. A_{TM} is undecidable.

A many-one reduction: $A \leq_m B$ if exists a computable function f such that $\forall x \in \Sigma_A^*, x \in A \iff f(x) \in B$. To prove that B is undecidable, (not semi-decidable, not co-semi-decidable) pick A which is undecidable (not semi, not co-semi.) and reduce A to B. To prove that a language is in the class (e.g., semi-decidable), give an algorithm.

Know how to do reductions and place languages in the corresponding classes, similar to the assignment (both easiness and hardness directions, where applicable).

Examples of undecidable languages: $A_{TM}, \text{Halt}_B, \text{NE}, \text{Total}, \text{All}, \text{Halt0Loop1}$. Know which are semi-decidable, which co-semi-decidable and which neither.

Rice’s theorem: any non-trivial property of Turing machines is undecidable (property: if $L(M_1) = L(M_2)$, then either both M_1 and M_2 have the property, or neither does).
Complexity theory, NP-completeness

- A Turing machine M runs in time $t(n)$ if for any input of length n the number of steps of M is at most $t(n)$ (worst-case running time).

- A language L is in the complexity class P (stands for Polynomial time) if there exists a Turing machine M, $\mathcal{L}(M) = L$ and M runs in time $O(n^c)$ for some fixed constant c. The class P is believed to capture the notion of efficient algorithms.

- A language L is in the class NP if there exists a polynomial-time verifier, that is, a relation $R(x, y)$ computable in polynomial time such that $\forall x, x \in L \iff \exists y, |y| \leq c|x|^d \land R(x, y)$. Here, c and d are fixed constants, specific for the language.

- A different, equivalent, definition of NP is a class of languages accepted by polynomial-time non-deterministic Turing machines. The name NP stands for “Non-deterministic Polynomial-time”.

- $P \subseteq NP \subseteq EXP$, where EXP is the class of languages computable in time exponential in the length of the input. It is known that $P \subseteq EXP$. All of them are decidable. Alternating quantifiers, get polynomial-time hierarchy $PH: P \subseteq NP \cap coNP \subseteq NP \cup coNP \subseteq PH \subseteq PSPACE \subseteq EXP$.

- Examples of languages in P: connected graphs, relatively prime pairs of numbers (and, quite recently, prime numbers), palindromes, etc.

- Examples of languages in NP: all languages in P, Clique, Hamiltonian Path, SAT, etc. Technically, functions computing an output other than yes/no are not in NP since they are not languages.

- Examples of languages not known to be in NP: LargestClique, TrueQuantifiedBooleanFormulas.

- Major Open Problem: is $P = NP$? Widely believed that not, weird consequences if they were, including breaking all modern cryptography and automating creativity.

- If $P = NP$, then can compute witness y in polynomial time. Same idea as search-to-decision reductions.

- Polynomial-time reducibility: $A \leq_p B$ if there exists a polynomial-time computable function f such that $\forall x \in \Sigma, x \in A \iff f(x) \in B$.

- A language L is N-hard if every language in NP reduces to L. A language is NP-complete it is both in NP and NP-hard.

- Cook-Levin Theorem states that SAT is NP-complete. The rest of NP-completeness proofs we saw are by reducing SAT (3SAT) to the other problems (also mentioned a direct proof for CircuitSAT in the notes).

- Examples of NP-complete problems with the reduction chain:
 - SAT \leq_p 3SAT
 - 3SAT \leq_p IndSet \leq_p Clique
 - HamCycle \leq_p HamPath \leq_p stHamPath (skipped $3SAT \leq_p HamPath$ and HamCycle $\leq_p TSP$; see the book.)
 - Partition \leq_p SubsetSum $\leq_p GKP$ (skipped $3SAT \leq_p SubsetSum$; see the book.)

- Search-to-decision reductions: given an “oracle” with yes/no answers to the language membership (decision) problem in NP, can compute the solution in polynomial time with polynomially many yes/no queries. Similar idea to computing a witness if $P = NP$.
Algorithm design for languages in P

• **Greedy algorithms** Sort items then go through them either picking or ignoring each; never reverse a decision. Running time usually $O(n \log n)$ where n is the number of elements (depends on data structures used, too). Often does not work or only gives an approximation; when it works, correctness proof by induction on the number of steps (i.e., S_i is the solution set after considering i^{th} element in order).)
 - Base case: show $\exists S_{opt}$ such that $S_0 \subseteq S_{opt} \subseteq S_0 \cup \{1, \ldots, n\}$.
 - Induction hypothesis: assume $\exists S_{opt}$ such that $S_i \subseteq S_{opt} \subseteq S_i \cup \{i + 1, \ldots, n\}$.
 - Induction step: show $\exists S'_{opt}$ such that $S_{i+1} \subseteq S'_{opt} \subseteq S_{i+1} \cup \{i + 2, \ldots, n\}$.
 1. Element $i + 1$ is not in S_{i+1}. Argue that S_{opt} does not have it either, then $S'_{opt} = S_{opt}$.
 2. Element $i + 1$ is in S_{i+1}. Either S_{opt} has it (possibly in the different place – then switch things around to get S'_{opt}), or S_{opt} does not have it, then throw some element j out of S_{opt} and put $i + 1$ instead for S'_{opt}; argue that your new solution is at least as good.

• Examples of greedy algorithms: Kruskal’s algorithm for Minimal Spanning Tree, activity selection, scheduling with deadlines and profits, problem from the assignment...

• **Dynamic programming** Precompute partial solutions starting from the base cases, keep them in a table, compute the table from already precomputed cells (e.g., row by row, but can be different). Arrays can be 1, 2, 3-dimensional (possibly more), depends on the problem. Steps of design:
 1. Define an array; that is, state what are the values being put in the cells, then what are the dimensions and where the value of the best solution is stored. E.g.: $A(i, t)$ stores the profit of the best solution for jobs from 1 to i finishing by time t, where $1 \leq i \leq n$, and $0 \leq t \leq \text{maxd}_i$. Final answer value is $A(n, \text{maxd}_i)$.
 2. Give a recurrence to compute A from the previous cells in the array, including initialization.
 E.g. (longest common subsequence) $A(i, j) = \begin{cases} A(i - 1, j - 1) + 1 & x_i = y_j \\ \text{max}\{A(i - 1, j), A(i, j - 1)\} & \text{otherwise} \end{cases}$
 3. Give pseudocode to compute the array (usually we omitted it in class).
 4. Explain how to recover the actual solution from the array (usually using a recursive PrintOpt() procedure to retrace decisions).

• Running time a function of the size of the array – might be not polynomial (e.g., scheduling with very large deadlines)!

• Examples: Scheduling, Knapsack, Longest Common Subsequence, Longest Increasing Subsequence, All Pair Shortest Path (Floyd-Warshall).

• **Backtracking** Used when others don’t work; usually exponential time, but faster than testing all possibilities. Make a decision tree of possibilities, go through the tree recursively, if some possibilities fail, backtrack.

Regular languages and finite automata:

• An **alphabet** is a finite set of symbols. Set of all finite strings over an alphabet Σ is denoted Σ^*. A **language** is a subset of Σ^*. Empty string is called ϵ (epsilon).

• **Regular expressions** are built recursively starting from \emptyset, ϵ and symbols from Σ and closing under Union ($R_1 \cup R_2$), Concatenation ($R_1 \circ R_2$) and Kleene Star (R^* denoting 0 or more repetitions of R) operations. These three operations are called regular operations.
• A Deterministic Finite Automaton (DFA) \(D \) is a 5-tuple \((Q, \Sigma, \delta, q_0, F) \), where \(Q \) is a finite set of states, \(\Sigma \) is the alphabet, \(\delta : Q \times \Sigma \rightarrow Q \) is the transition function, \(q_0 \) is the start state, and \(F \) is the set of accept states. A DFA accepts a string if there exists a sequence of states starting with \(r_0 = q_0 \) and ending with \(r_n \in F \) such that \(\forall i, 0 \leq i < n, \delta(r_i, w_i) = r_{i+1} \). The language of a DFA, denoted \(\mathcal{L}(D) \) is the set of all and only strings that \(D \) accepts.

• Deterministic finite automata are used in string matching algorithms such as Knuth-Morris-Pratt algorithm.

• A language is called regular if it is recognized by some DFA.

• The class of regular languages is closed under union, concatenation and Kleene star operations.

• A non-deterministic finite automaton (NFA) is a 5-tuple \((Q, \Sigma, \delta, q_0, F) \), where \(Q, \Sigma, q_0 \) and \(F \) are as in the case of DFA, but the transition function \(\delta \) is \(\delta : Q \times (\Sigma \cup \{\epsilon\}) \rightarrow \mathcal{P}(Q) \). Here, \(\mathcal{P}(Q) \) is the powerset (set of all subsets) of \(Q \). A non-deterministic finite automaton accepts a string \(w = w_1 \ldots w_m \) if there exists a sequence of states \(r_0, \ldots, r_m \) such that \(r_0 = q_0, r_m \in F \) and \(\forall i, 0 \leq i < m, r_{i+1} \in \delta(r_i, w_i) \).

• Theorem: For every NFA there is a DFA recognizing the same language. The construction sets states of the DFA to be the powerset of states of NFA, and makes a (single) transition from every set of states to a set of states accessible from it in one step on a letter following with all states reachable by (a path of) \(\epsilon \)-transitions. The start state of the DFA is the set of all states reachable from \(q_0 \) by following possibly multiple \(\epsilon \)-transitions.

• Theorem: A language is recognized by a DFA if and only if it is generated by some regular expression. In the proof, the construction of DFA from a regular expression follows the closure proofs and recursive definition of the regular expression.

• The class of regular languages is polynomial-time decidable; moreover, it is possible to decide in polynomial time, given a description of a DFA or an NFA and a string, whether this DFA/NFA accepts this string. For DFAs, just simulate it; for NFA, need to keep the list of all states where the automaton could be at the moment and need reachability for \(\epsilon \)-arrows.

• Lemma The pumping lemma for regular languages states that for every regular language \(A \) there is a pumping length \(p \) such that \(\forall s \in A, \text{ if } |s| > p \text{ then } s = xyz \text{ such that } 1) \forall i \geq 0, xy^iz \in A. 2) |y| > 0 3) |xy| < p \). The proof proceeds by setting \(p \) to be the number of states of a DFA recognizing \(A \), and showing how to eliminate or add the loops. This lemma is used to show that languages such as \(\{0^n1^n\}, \{ww^r\} \) and so on are not regular.
Context-free languages and Pushdown automata.

- A pushdown automaton (PDA) is a “NFA with a stack”; more formally, a PDA is a 6-tuple \((Q, \Sigma, \Gamma, \delta, q_0, F)\) where \(Q\) is the set of states, \(\Sigma\) the input alphabet, \(\Gamma\) the stack alphabet, \(q_0\) the start state, \(F\) is the set of finite states and the transition function \(\delta : Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \to \mathcal{P}(Q \times (\Gamma \cup \{\epsilon\}))\).

- A context-free grammar (CFG) is a 4-tuple \((V, \Sigma, R, S)\), where \(V\) is a finite set of variables, with \(S \in V\) the start variable, \(\Sigma\) is a finite set of terminals (disjoint from the set of variables), and \(R\) is a finite set of rules, with each rule consisting of a variable followed by \(\rightarrow\) followed by a string of variables and terminals.

- Let \(A \rightarrow w\) be a rule of the grammar, where \(w\) is a string of variables and terminals. Then \(A\) can be replaced in another rule by \(w\): \(uAv\) in a body of another rule can be replaced by \(uvw\) (we say \(uAv\) yields \(uvw\), denoted \(uAv \Rightarrow uvw\)). If there is a sequence \(u = u_1, u_2, \ldots u_k = v\) such that for all \(i, 1 \leq i < k, u_i \Rightarrow u_{i+1}\) then we say that \(u\) derives \(v\) (denoted \(u \Rightarrow v\)). If \(G\) is a context-free grammar, then the language of \(G\) is the set of all strings of terminals that can be generated from the start variable: \(L(G) = \{w \in \Sigma^* | S \Rightarrow w\}\). A parse tree of a string is a tree representation of a sequence of derivations; it is leftmost if at every step the first variable from the left was substituted. A grammar is called ambiguous if there is a string in a grammar with two different (leftmost) parse trees.

- A language is called a context-free language (CFL) if there exists a CFG generating it.

- **Theorem** Every regular language is context-free.

- **Theorem** A language is context-free iff some pushdown automaton recognizes it. The proof of one direction constructs a PDA from the grammar (by having a middle state with “loops” on rules; loops consist of as many states as needed to place all symbols in the rule on the stack). The proof for another direction constructs a grammar that for every pair of states has a variable and a rule generating strings for a sequence of steps between these states keeping stack content.

- A grammar is in Chomsky normal form if all rules are of the form \(A \rightarrow BC\) or \(A \rightarrow a\), only \(S \rightarrow \epsilon\) allows to have \(\epsilon\), and \(S\) occurs only on the left side. Any grammar can be converted into Chomsky normal form; if the last rule in Sipser’s construction is done first, then the resulting grammar is polynomial size.

- A derivation of a string \(w\) in a grammar in Chomsky normal form takes exactly \(2|w| - 1\) steps.

- Context-free languages are decidable in polynomial time via a dynamic programming algorithm that, given a grammar in Chomsky normal form and a string, decided if this grammar derives the string.

- **Lemma** The pumping lemma for context-free languages states that for every CFL \(A\) there is a pumping length \(p\) such that \(\forall s \in A, \text{ if } |s| > p \text{ then } s = uvxyz\text{ such that }1) \forall i \geq 0, uv^ixyz \in A. 2) |vy| > 0 3) |vxy| < p.\) The proof proceeds by analyzing repeated variables in large parse trees, setting the pumping length to \(d|V| + 1\) where \(d\) is the length (number of symbols) of the longest rule. This lemma is used to show that languages such as \(\{a^nb^n c^n\}, \{ww\}\) and so on are not regular.

- **Theorem** The class of CFLs is not closed under complementation and intersection (although it is closed under union, Kleene star and concatenation). Example: complement of \(\{a^nb^n c^n\}\) is context-free, but \(\{a^nb^n c^n\}\) is not.

- **Theorem** There are context-free languages not recognized by any deterministic PDA. Example: also complement of \(\{a^nb^n c^n\}\), since deterministic PDA are closed under complementation.