
CS 3719 (Theory of Computation and Algorithms) –
Lecture 3

Antonina Kolokolova ∗

January 14, 2013

Last lecture we did a simple example of a Turing machine recognizing a language of all
binary strings that recognize an even number of 1s (which we called PARITY). Note that
our Turing machine never used the tape for anything other than reading input bits in order;
it never even needed to revisit a bit and read it a second time. A model of computation
that we will look at closer to the end of this course, a Finite Automaton (or Finite State
Machine), is just that, a “Turing machine without a tape”. In that case, there are still
states, input alphabet and the transition table; transitions are of the form (qi, a) → qj (so
there is no “writing” or “moving” part, and a is the next input symbol). The description
also specifies the start state; rather than having a single accept and a single reject state,
some states are marked as accepting and the rest rejecting.

For example, such finite automaton for the PARITY would have just two states: one, call
it qeven, codes that the automaton has seen an even number of 1s so far, and the other,
qodd, that it has seen an odd number of 1s, respectively. The automaton starts in state qeven

(which also happens to be the only accepting state); every time 1 is read it switches between
the two states; when a 0 is read, it stays in the same state. If it ended up in qodd, it must
have seen an odd number of 1s, and otherwise an even number.

A more complicated example is a Turing machine recognizing the set of palindromes. This
language, though still fairly simple, is not doable by a Finite Automaton described above;
we will actually prove it by the end of the course.

Example 1. PAL = the set of even length palindromes =
{yyr|y ∈ {0, 1}∗, where yr means y spelled backwards.

We will design a Turing machine M that accepts the language PAL⊆ {0, 1}∗. M will have
input alphabet Σ = {0, 1}, and tape alphabet Γ = {0, 1, b/}. (Usually it is convenient to let
Γ have a number of extra symbols in it, but we don’t need to for this simple example.) We
will have state set Q = {q0, q1, q2, q3, q4, q5, qaccept, qreject}.

∗The material in this set of notes came from many sources, in particular “Introduction to Theory of
Computation” by Sipser and course notes of U. of Toronto CS 364. Special thank you to Richard Bajona
for sharing scribed lecture notes.

1



If, in state q0, M reads 0, then that symbol is replaced
by a blank, and the machine enters state q1; the role of
q1 is to go to the right until the first blank, remembering
that the symbol 0 has most recently been erased; upon
finding that blank, M enters state q2 and goes left one
square looking for symbol 0; if 0 is not there then we
reject, but if 0 is there, then we erase it and enter state
q3 and go left until the first blank; we then goes right
one square, enter state q0, and continue as before.
If we read 1 in state q0, then we operate in a manner
similar to that above, using states q4 and q5 instead of
q1 and q2.
If we read b/ in state q0, this means that all the characters
of the input have been checked, and so we accept.
Formally, the transition function δ is as follows. (Note
that when we accept or reject, it doesn’t matter what
we print or what direction we move in; we arbitrarily
choose to print b/ and move right in these cases.)

State q Symbol s Action δ(q, s)
q0 0 (q1, b/, R)
q1 0 (q1, 0, R)
q1 1 (q1, 1, R)
q1 b/ (q2, b/, L)
q2 1 (qreject, 0, R)
q2 b/ (qreject, 0, R)
q2 0 (q3, b/, L)
q3 0 (q3, 0, L)
q3 1 (q3, 1, L)
q3 b/ (q0, b/, R)
q0 1 (q4, b/, R)
q4 0 (q4, 0, R)
q4 1 (q4, 1, R)
q4 b/ (q5, b/, L)
q5 0 (qreject, 0, R)
q5 b/ (qreject, 0, R)
q5 1 (q3, b/, L)
q0 b/ (qaccept, 0, R)

Even though we will mainly talk about Turing machines just accepting or rejecting a string, it
is possible to define a Turing machine producing an output. In that case, the Turing machine
halts in an accepts state, with the tape clear except for the output and head pointing to the
first symbol of the output.

Example 2 (+1 operation). Here we will show a Turing machine M which takes as its input
a string in binary and adds 1 to it. That is, it will halt in an accept state pointing to the
first non-empty symbol, and the content of the tape will be input plus 1.

M = (Q, {0, 1}, {0, 1,t}, δ, q0, qaccept, qreject).

To add 1 to a binary number, the usual algo-
rithm is to start from the last bit, add 1 to it,
and propagate the possible carry as much as
needed, to the closest 0 or blank from the end.
For example, to add 1 to string 1011 we need
to propagate the carry to the second symbol,
0, while flipping the 1s.

0 1 t
q0 (q0, 0, R) (q0, 1, R) (qc,t, L)
qc (qn, 1, L) (qc, 0, L) (qaccept, 1, R)
qn (qn, 0, L) (qn, 1, L) (qaccept,t, R)

Our Turing machine implements this algorithm as follows. It starts by scanning the input
to the end of the input string, staying in q0. After that, it starts moving backward, using
two states: a “carry” qc state and “no carry” state qn. In the “carry” state, it flips a bit,
and if the bit was a 1, remains in the carry state, otherwise goes to non-carry. In no carry
state it scans back to the start of the string and there goes to the accept state.

2


