
CS 3719 (Theory of Computation and Algorithms) –
Lecture 1

Antonina Kolokolova ∗

January 7, 2013

1 Introduction

The following four problems have been known since ancient Greece:

Problem 1 Is a given number n prime?

Problem 2 What are the prime factors of n? If n is known to be a product of two primes
p and q, what are p and q?

Problem 3 Do given numbers n and m have a common factor (that is, are they relatively
prime or not)?

Problem 4 Given an equation with integer coefficients (e.g., 2x+ 5yz = z2, or x+ 2 = y),
does it have integer solutions?

Problem 1 was solved by Eratosthenes (via his “Sieve”): Write down all integers less than
or equal to n. Then cross out all even numbers, all multiples of 3, of 5, and so on, for each
prime less than

√
n. If n remains on the list, then n is prime.

Problem 3 was solved by Euclid via what is now known as Euclid’s Algorithm for finding GCD
of m and n: Initially set r0 = m, r1 = n, and i = 1. While ri 6= 0, assign ri+1 = ri−1remri

and i = i+ 1. Return ri−1.

The important difference between the two algorithms is that Euclid’s algorithm is very
efficient (polynomial-time in the number of bits needed to write the inputs), whereas Er-
atosthenes’ algorithm is extremely inefficient. The number of operations needed to find out

∗The material in this set of notes came from many sources, in particular “Introduction to Theory of
Computation” by Sipser and course notes of U. of Toronto CS 364. Special thank you to Richard Bajona
for sharing his scribed lecture notes.

1

whether two 256-bit numbers are relatively prime is proportional to 256, and can be done
very fast. On the other hand, Eratosthenes’s sieve would require the number of operations
on the order of 2256; for comparison, the number of atoms in our universe is estimated to be
around 2200.

Very recently, in 2002, there was a major breakthrough: an efficient algorithm for primality
testing (problem 1) was found by Manindra Agrawal and his two undergraduate students,
Kayal and Saxena. So it has taken more than two thousand years to design an efficient
algorithm for the problem. Although the notion of efficiency as we know it (time polynomial
in the size of the input) appeared only in 1960s, in the work of Allan Cobham.

For problem 2 we do not know an efficient solution. Finding such a solution will have
serious consequences for cryptography: one of the assumptions on which security of the RSA
protocol is bases is that factoring is not efficient, so factoring large numbers is hard.

Problem 4, the Diophantine equations problem, turns out to be even more difficult than
factoring numbers. In 1900, Hilbert proposed several problems at the congress of mathe-
maticians in Paris that he considered to be the main problems left to do in mathematics;
the full list contained 23 problems. You might remember problems number 1 (is there a
set of cardinality strictly between countable and reals?) and number 2 (prove that axioms
of arithmetic are consistent). His 10th problem was stated as ”find a procedure to deter-
mine whether a given Diophantine equation has a solution”. But in 1970, Yuri Matiyasevich
showed that such a procedure cannot possibly exist. So this problem is significantly harder
than figuring out a factorization of a number: no amount of brute force search can tell if
some of such equations have an integer solution.

2 Notation: alphabets, languages, encodings and prob-

lems

The following notation is going to be used throughout the course.

Definition 1 Let Σ (pronounced ”sigma”, written the same as the summation sign) be a
finite alphabet of symbols, By Σ∗ (pronounced ”sigma star”) we mean the set of all finite
strings consisting of elements of Σ, including the empty string ε (epsilon). By a language
over Σ we mean a subset L ⊆ Σ∗. For a string x ∈ Σ∗, we denote the length of x by |x|.

For example, given an integer, find its prime factorization; or, given a graph G and two
vertices s and t, find a shortest path from s to t in G.

For much of the course we will assume that our inputs are binary strings. But in most
problems we consider the inputs are more complicated – graphs, pairs of numbers and so on.

2

In this case, we can still encode these objects as binary strings without losing much space.
For example, a pair of numbers (x, y) could be encoded very easily by making a binary
string in which odd digits are the digits of the numbers, and even digits are, say, 1 except
the two digits 00 used as a delimiter between the numbers (so 101, 011 can be encoded as
11011100011111). As another example, graphs can be encoded as binary strings representing
the adjacency matrix of a graph; usually for convenience when encoding graphs the matrix
is preceded by the number of vertices in unary, then 0, then the matrix. So an undirected
graph on 4 vertices with edges (1, 3), (2, 4), (3, 4) becomes 111100010000110010110. One
more note about the encoding: the same problem can be encoded in multiple different ways
(for example, we could have used a different order of vertices in the graph, or a more compact
pairing functionsuch as Cantor’s pairing function for numbers). We usually imply that our
algorithm knows precisely the kind of encoding of a problem it is getting as an input. One
more note: we could have encoded the input in unary (that is, a number, say, 5 would be
represented as 11111, rather than 101); but it would make our encoding exponentially longer
to write down. You can check for yourself that going from base 2 to any other constant basis
does not change the lenght of the encoding that much.

A decision (or membership) problem is a function from strings to Boolean values f : Σ∗ →
{yes, no}.

For example, “given integer n, is n prime?”

A language associated with a given decision problem f is the set {x ∈ Σ∗ | f(x) = yes}. For
example, PRIME={x ∈ N | x is a prime number }.

A function problem is a function from strings to strings f : Σ∗ → Σ∗.

In this course, we will mainly study models of computation that compute decision problems
(in most cases the complexity of solving decision and function problems is very similar).
The two main models we will consider are the Finite State Machines (or Finite Automata)
which are described in terms of states, and state changes as a reaction to the environment
(i.e., input) and a “finite automaton with a memory”, a Turing machine. We will define the
latter in the next lecture and come back to the memoryless model at the end of the course.
Intuitively, an example of a finite automaton is something like a simple coke machine, or
a sensor-operated bus door; a Turing machine, which can revisit its input multiple times
and write things down is a full-blown computer. There is an intermediate model of a Push-
down Automaton (where the memory access is limited to be a first-in-last-out pipe) with an
intermediate complexity.

3

