
Midterm study sheet for CS3719

Turing machines and decidability.

• A Turing machine is a finite automaton with an infinite memory (tape). Formally, a Turing machine
is a 7-tuple M = (Q,Σ,Γ, δ, q0, qaccept, qreject). Here, Q is a finite set of states as before, with three
special states q0 (start state), qaccept and qreject. The last two are called the halting states, and they
cannot be equal. Σ is a finite input alphabet. Γ is a tape alphabet which includes all symbols from
Σ and a special symbol for blank, t. Finally, the transition function is δ : Q× Γ→ Q× Γ× {L,R}
where L,R mean move left or right one step on the tape.

• Equivalent (not necessarily efficiently) variants of Turing machines:two-way vs. one-way infinite tape,
multi-tape, non-deterministic.

• Church-Turing Thesis Anything computable by an algorithm of any kind (our intuitive notion of
algorithm) is computable by a Turing machine.

• A Turing machine M accepts a string w if there is an accepting computation of M on w, that is,
there is a sequence of configurations (state,non-blank memory,head position) starting from q0w and
ending in a configuration containing qaccept, with every configuration in the sequence resulting from
a previous one by a transition in δ of M . A Turing machine M recognizes a language L if it accepts
all and only strings in L: that is, ∀x ∈ Σ∗, M accepts x iff x ∈ L. As before, we write L(M) for the
language accepted by M .

• A language L is called Turing-recognizable (also recursively enumerable, r.e, or semi-decidable) if ∃ a
Turing machine M such that L(M) = L. A language L is called decidable (or recursive) if ∃ a Turing
machine M such that L(M) = L, and additionally, M halts on all inputs x ∈ Σ∗. That is, on every
string M either enters the state qaccept or qreject in some point in computation. A language is called co-
semi-decidable if its complement is semi-decidable. Semi-decidable languages can be described using
unbounded ∃ quantifier over a decidable relation; co-semi-decidable using unbounded ∀ quantifier.
There are languages that are higher in the arithmetic hierarchy than semi- and co-semi-decidable;
they are described using mixture of ∃ and ∀ quantifiers and then number of alternation of quantifiers
is the level in the hierarchy.

• Decidable languages are closed under intersection, union, complementation, Kleene star, etc. Semi-
decidable languages are not closed under complementation, but closed under intersection and union.

• If a language is both semi-decidable and co-semi-decidable, then it is decidable.

• Encoding languages and Turing machines as binary strings.

• Undecidability; proof by diagonalization. ATM is undecidable.

• A many-one reduction: A ≤m B if exists a computable function f such that ∀x ∈ Σ∗A, x ∈ A ⇐⇒
f(x) ∈ B. To prove that B is undecidable, (not semi-decidable, not co-semi-decidable) pick A which
is undecidable (not semi, not co-semi.) and reduce A to B.

• Know how to do reductions and place languages in the corresponding classes, similar to the assign-
ment.

• Examples of undecidable languages: ATM , HaltB, NE, Total, All, Halt0Loop1.

1



Complexity theory, NP-completeness

• A Turing machine M runs in time t(n) if for any input of length n the number of steps of M is at
most t(n).

• A language L is in the complexity class P (stands for Polynomial time) if there exists a Turing
machine M , L(M) = L and M runs in time O(nc) for some fixed constant c. The class P is believed
to capture the notion of efficient algorithms.

• A language L is in the class NP if there exists a polynomial-time verifier, that is, a relation R(x, y)
computable in polynomial time such that ∀x, x ∈ L ⇐⇒ ∃y, |y| ≤ c|x|d ∧R(x, y). Here, c and d are
fixed constants, specific for the language.

• A different, equivalent, definition of NP is a class of languages accepted by polynomial-time non-
deterministic Turing machines. The name NP stands for “Non-deterministic Polynomial-time”.

• P ⊆ NP ⊆ EXP, where EXP is the class of languages computable in time exponential in the length of
the input.

• Examples of languages in P: connected graphs, relatively prime pairs of numbers (and, quite recently,
prime numbers), etc.

• Examples of languages in NP: all languages in P, Clique, Hamiltonian Path, SAT, etc. Technically,
functions computing an output other than yes/no are not in NP since they are not languages.

• Major Open Problem: is P = NP? Widely believed that not, weird consequences if they were, including
breaking all modern cryptography and automating creativity.

• If P = NP, then can compute witness y in polynomial time.

• Polynomial-time reducibility : A ≤p B if there exists a polynomial-time computable function f such
that ∀x ∈ Σ, x ∈ A ⇐⇒ f(x) ∈ B.

• A language L is NP-hard if every language in NP reduces to L. A language is NP-complete it is both
in NP and NP-hard.

• Cook-Levin Theorem states that SAT is NP-complete. The rest of NP-completeness proofs we saw
are by reducing SAT (3SAT) to the other problems (also mentioned a direct proof for CircuitSAT in
the notes).

• Examples of NP-complete problems with the reduction chain:

– SAT ≤p 3SAT

– 3SAT ≤p IndSet ≤p Clique

– HamCycle ≤p TSP (skipped 3SAT ≤p HamPath; see the book.)

– 3SAT ≤p SubsetSum ≤p Partition Reduction relies on numbers in binary; unary case solvable
by dynamic programming in polynomial time.

• Search-to-decision reductions: given an “oracle” with yes/no answers to the language membership
(decision) problem in NP, can compute the solution in polynomial time with polynomially many
yes/no queries. Similar idea to computing a witness if P = NP.
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Algorithm design techniques

• Greedy algorithms and dynamic programming were the main design paradigms we looked at (we also
talked about backtracking, but just as a case when dynamic programming does not work).

• Greedy algorithms work when there is a way to pick a locally optimal choices that lead to a globally
optimal solution. In the proof, this is described as having a ”promising solution” after each step of
the algorithm: the partial solution constructed so far can be extended to the optimal using only (a
subset of) remaining elements. That is, Si+1 ⊆ Sopt ⊆ Si+1 ∪ {i+ 2, . . . , n}. This property is proven
by induction on i for a correctness proof of the algorithm.

– Base case: ∃Sopt such that S0 ⊆ Sopt ⊆ {1, . . . , n}: there is some set (possibly empty) satisfying
the constraints, so some set satisfying the constraints is optimal, and any set extends empty set
S0.

– Induction step: Assume that the algorithm worked correctly for the first i steps, that is, a partial
solution Si is promising: Si ⊆ Sopt ⊆ Si∪{i+ 1, . . . , n}. Now, show that there exists an optimal
solution S′opt, Si+1 ⊆ S′opt ⊆ Si+1 ∪ {i+ 2, . . . , n}. Consider cases: the algorithm pick/does not
pick the element i + 1, and Sopt already has/does not have i + 1. In case of discrepancy, show
how to modify Sopt to obtain an equivalent solution containing i+ 1 (”exchange lemma”).

– Conclude that Sn must be optimal, since Sn ⊆ Sopt ⊆ Sn ∪ ∅.

• Examples of greedy algorithms: Kruskal’s, Fractional Knapsack, Scheduling with deadlines and prof-
its (no durations) ; 1/2 approximation for monitors on links, 1/2 approximation for Knapsack.

• Often, running time of a greedy algorithm is O(n log n), dominated by the sorting part.

• Examples of dynamic programming algorithms: Floyd-Warshall, Longest Common Subsequence,
scheduling with deadlines, profits and durations.

• Steps of designing a dynamic programming algorithm:

1. Define the array, specifying the ranges of the variables and stating how to get the value of the
best solution from the array (e.g., ”A(i, j) contains the longest common subsequence of x[1..i]
and y[1..j]).

2. Give a recurrence computing the values in the array, including initialization (e.g., A(i, j) = ... )

3. Give pseudocode for the algorithm (filling the array and extracting the value of the answer)

4. Describe how to compute the actual solution, not just the value: PrintOpt().

• For the test, concentrate on Step 1 and Step 2. Be able to fill an array for a given example.

• Running time of a dynamic programming is usually comparable to the size of the table (if there is a
max or min over non-constant number of choices, then times that number of choices). For the case
of scheduling and knapsack, that could result in non-polynomial running time O(nd), where d is the
maximal deadline/capacity.

• Know scheduling algorithms (notes) and be able to say in which case which algorithm works (e.g.,
that dynamic programming is not polynomial time if the deadlines are more than exponentially larger
than the number of jobs, and greedy works when there are no durations), and what you’d do in that
case (backtracking). Know Knapsack problem and its variants (Fractional Knapsack can be solved
by greedy, but Simple Knapsack is already NP-complete and can be reduced to scheduling, but can
be approximated to within the factor of 2 by a greedy algorithm).
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Regular languages and finite automata:

• An alphabet is a finite set of symbols. Set of all finite strings over an alphabet Σ is denoted Σ∗. A
language is a subset of Σ∗. Empty string is called ε (epsilon).

• Regular expressions are built recursively starting from ∅, ε and symbols from Σ and closing under
Union (R1 ∪R2), Concatenation (R1 ◦R2) and Kleene Star (R∗ denoting 0 or more repetitions of R)
operations. These three operations are called regular operations.

• A Deterministic Finite Automaton (DFA) D is a 5-tuple (Q,Σ, δ, q0, F ), where Q is a finite set of
states, Σ is the alphabet, δ : Q×Σ→ Q is the transition function, q0 is the start state, and F is the
set of accept states. A DFA accepts a string if there exists a sequence of states starting with r0 = q0
and ending with rn ∈ F such that ∀i, 0 ≤ i < n, δ(ri, wi) = ri+1. The language of a DFA, denoted
L(D) is the set of all and only strings that D accepts.

• Deterministic finite automata are used in string matching algorithms such as Knuth-Morris-Pratt
algorithm.

• A language is called regular if it is recognized by some DFA.

• A non-deterministic finite automaton (NFA) is a 5-tuple (Q,Σ, δ, q0, F ), where Q, Σ, q0 and F
are as in the case of DFA, but the transition function δ is δ : Q × (Σ ∪ {ε}) → P(Q). Here,
P(Q) is the powerset (set of all subsets) of Q. A non-deterministic finite automaton accepts a
string w = w1 . . . wm if there exists a sequence of states r0, . . . rm such that r0 = q0, rm ∈ F and
∀i, 0 ≤ i < m, ri+1 ∈ δ(ri, wi).

• Theorem: For every NFA there is a DFA recognizing the same language. The construction sets
states of the DFA to be the powerset of states of NFA, and makes a (single) transition from every set
of states to a set of states accessible from it in one step on a letter following with all states reachable
by (a path of ) ε-transitions. The start state of the DFA is the set of all states reachable from q0 by
following possibly multiple ε-transitions.

• Theorem: A language is recognized by a DFA if and only if it is generated by some regular expres-
sion.

• Lemma The pumping lemma for regular languages states that for every regular language A there
is a pumping length p such that ∀s ∈ A, if |s| > p then s = xyz such that 1) ∀i ≥ 0, xyiz ∈ A. 2)
|y| > 0 3) |xy| < p. The proof proceeds by setting p to be the number of states of a DFA recognizing
A, and showing how to eliminate or add the loops. This lemma is used to show that languages such
as {0n1n}, {wwr} and so on are not regular.

Context-free languages and Pushdown automata.

• A pushdown automaton (PDA) is a “NFA with a stack”; more formally, a PDA is a 6-tuple (Q,Σ,Γ, δ, q0, F )
where Q is the set of states, Σ the input alphabet, Γ the stack alphabet, q0 the start state, F is the
set of finite states and the transition function δ : Q× (Σ ∪ {ε})× (Γ ∪ {ε})→ P(Q× (Γ ∪ {ε})).

• A context-free grammar (CFG) is a 4-tuple (V,Σ, R, S), where V is a finite set of variables, with
S ∈ V the start variable, Σ is a finite set of terminals (disjoint from the set of variables), and R is
a finite set of rules, with each rule consisting of a variable followed by − > followed by a string of
variables and terminals.
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• . Let A→ w be a rule of the grammar, where w is a string of variables and terminals. Then A can
be replaced in another rule by w: uAv in a body of another rule can be replaced by uwv (we say
uAv yields uwv,denoted uAv ⇒ uwv). If there is a sequence u = u1, u2, . . . uk = v such that for all i,
1 ≤ i < k, ui ⇒ ui+1 then we say that u derives v (denoted v

∗⇒ v.) If G is a context-free grammar,
then the language of G is the set of all strings of terminals that can be generated from the start
variable: L(G) = {w ∈ Σ∗|S ∗⇒ w}. A parse tree of a string is a tree representation of a sequence of
derivations; it is leftmost if at every step the first variable from the left was substituted. A grammar
is called ambiguous if there is a string in a grammar with two different (leftmost) parse trees.

• A language is called a context-free language (CFL) if there exists a CFG generating it.

• Theorem Every regular language is context-free.

• Theorem A language is context-free iff some pushdown automaton recognizes it.

• Theorem Every CFL (and, thus, every regular language) membership problem is solvable in poly-
nomial time. That is, given a string and a grammar, it is possible to determine in polynomial time
whether this grammar generates this string.

• There is a ”pumping lemma” for CFLs, analogous to pumping lemma for regular languages, but
slightly more complicated. It can be used to show that anbncn is not CFL.

• Theorem There are context-free languages not recognized by any deterministic PDA. (No proof
given in class).
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