
Midterm study sheet for CS3719

Turing machines and decidability.

• A Turing machine is a finite automaton with an infinite memory (tape). Formally, a Turing machine
is a 6-tuple M = (Q,Σ,Γ, δ, q0, qaccept, qreject). Here, Q is a finite set of states as before, with three
special states q0 (start state), qaccept and qreject. The last two are called the halting states, and they
cannot be equal. Σ is a finite input alphabet. Γ is a tape alphabet which includes all symbols from
Σ and a special symbol for blank, t. Finally, the transition function is δ : Q× Γ→ Q× Γ× {L,R}
where L,R mean move left or right one step on the tape.

• Equivalent (not necessarily efficiently) variants of Turing machines:two-way vs. one-way infinite tape,
multi-tape, non-deterministic.

• Church-Turing Thesis Anything computable by an algorithm of any kind (our intuitive notion of
algorithm) is computable by a Turing machine.

• A Turing machine M accepts a string w if there is an accepting computation of M on w, that is,
there is a sequence of configurations (state,non-blank memory,head position) starting from q0w and
ending in a configuration containing qaccept, with every configuration in the sequence resulting from
a previous one by a transition in δ of M . A Turing machine M recognizes a language L if it accepts
all and only strings in L: that is, ∀x ∈ Σ∗, M accepts x iff x ∈ L. As before, we write L(M) for the
language accepted by M .

• A language L is called Turing-recognizable (also recursively enumerable, r.e, or semi-decidable) if ∃ a
Turing machine M such that L(M) = L. A language L is called decidable (or recursive) if ∃ a Turing
machine M such that L(M) = L, and additionally, M halts on all inputs x ∈ Σ∗. That is, on every
string M either enters the state qaccept or qreject in some point in computation. A language is called co-
semi-decidable if its complement is semi-decidable. Semi-decidable languages can be described using
unbounded ∃ quantifier over a decidable relation; co-semi-decidable using unbounded ∀ quantifier.
There are languages that are higher in the arithmetic hierarchy than semi- and co-semi-decidable;
they are described using mixture of ∃ and ∀ quantifiers and then number of alternation of quantifiers
is the level in the hierarchy.

• Decidable languages are closed under intersection, union, complementation, Kleene star, etc. Semi-
decidable languages are not closed under complementation, but closed under intersection and union.

• If a language is both semi-decidable and co-semi-decidable, then it is decidable.

• Encoding languages and Turing machines as binary strings.

• Undecidability; proof by diagonalization. ATM is undecidable.

• A many-one reduction: A ≤m B if exists a computable function f such that ∀x ∈ Σ∗
A, x ∈ A ⇐⇒

f(x) ∈ B. To prove that B is undecidable, (not semi-decidable, not co-semi-decidable) pick A which
is undecidable (not semi, not co-semi.) and reduce A to B.

• Know how to do reductions and place languages in the corresponding classes, similar to the assign-
ment.

• Examples of undecidable languages: ATM , HaltB, NE, Total, All, Halt0Loop1.
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Complexity theory, NP-completeness

• A Turing machine M runs in time t(n) if for any input of length n the number of steps of M is at
most t(n).

• A language L is in the complexity class P (stands for Polynomial time) if there exists a Turing
machine M , L(M) = L and M runs in time O(nc) for some fixed constant c. The class P is believed
to capture the notion of efficient algorithms.

• A language L is in the class NP if there exists a polynomial-time verifier, that is, a relation R(x, y)
computable in polynomial time such that ∀x, x ∈ L ⇐⇒ ∃y, |y| ≤ c|x|d ∧R(x, y). Here, c and d are
fixed constants, specific for the language.

• A different, equivalent, definition of NP is a class of languages accepted by polynomial-time non-
deterministic Turing machines. The name NP stands for “Non-deterministic Polynomial-time”.

• P ⊆ NP ⊆ EXP, where EXP is the class of languages computable in time exponential in the length of
the input.

• Examples of languages in P: connected graphs, relatively prime pairs of numbers (and, quite recently,
prime numbers), etc.

• Examples of languages in NP: all languages in P, Clique, Hamiltonian Path, SAT, etc. Technically,
functions computing an output other than yes/no are not in NP since they are not languages.

• Major Open Problem: is P = NP? Widely believed that not, weird consequences if they were, including
breaking all modern cryptography and automating creativity.

• If P = NP, then can compute witness y in polynomial time.

• Polynomial-time reducibility : A ≤p B if there exists a polynomial-time computable function f such
that ∀x ∈ Σ, x ∈ A ⇐⇒ f(x) ∈ B.

• A language L is N-hard if every language in NP reduces to L. A language is NP-complete it is both in
NP and NP-hard.

• Cook-Levin Theorem states that SAT is NP-complete. The rest of NP-completeness proofs we saw
are by reducing SAT (3SAT) to the other problems (also mentioned a direct proof for CircuitSAT in
the notes).

• Examples of NP-complete problems with the reduction chain:

– SAT ≤p 3SAT

– 3SAT ≤p IndSet ≤p Clique

– HamCycle ≤p TSP (skipped 3SAT ≤p HamPath; see the book.)

– 3SAT ≤p SubsetSum ≤p Partition Reduction relies on numbers in binary; unary case solvable
by dynamic programming in polynomial time.

• Search-to-decision reductions: given an “oracle” with yes/no answers to the language membership
(decision) problem in NP, can compute the solution in polynomial time with polynomially many
yes/no queries. Similar idea to computing a witness if P = NP.
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