
CS 3719 (Theory of Computation and Algorithms) –
Lecture 6

Antonina Kolokolova∗

January 25, 2012

0.1 Examples of reductions

Recall that A ≤m B iff there exists a computable function f such that ∀x ∈ Σ∗A x ∈ A iff
f(x) ∈ B. The notation suggests that “A is at most as hard to solve as B”. Often we use
the reduction to prove hardness for problems of comparable complexity, but sometimes it is
not the case: A can be a lot simpler than B.

Example 1. {uu|u ∈ {0, 1}∗} ≤m ATM

We need to define f(x) =< M,w >. Take a Turing machine, say, which accepts an empty
string and rejects everything else. So the description of M is simple: Q = {q0, qaccept, qreject},
Σ = {0, 1}, Γ = {0, 1,t} δ = {(q0, 0) → (qreject, 0, R), (q0, 1) → (qreject, 0, R), (q0,t) →
(qaccept, 0, R). Now, define f(x) =< M, ε > if x = uu for some u ∈ {0, 1}∗ and f(x) =<
M, 0 > otherwise. This is a computable function, and it has the desired property that
x ∈ {uu|u ∈ {0, 1}∗} ⇐⇒ f(x) ∈ ATM .

Similarly, for the rest of this lecture we will use reductions to show that certain problems
are even harder than ones we encountered so far. Recall that semi-decidable languages are
ones for which there is a Turing machine which halts (and accepts) on all strings in the
language; for co-semi-decidable languages, there is a Turing machine halting on all inputs
not in the language. However, there are some languages which are neither semi-decidable nor
co-semi-decidable, but belong higher in arithmetic hierarchy, as it is called. The best way to
think about them is using quantifiers: semi-decidable languages correspond to an existential
quantifier (or several existential quantifiers) over a decidable predicate (e.g., ”exists a string
on which there exists an accepting computation” – here, the decidable predicate is the check
that the existential quantifiers indeed guessed a string and a correct computation of this

∗The material in this set of notes came from many sources, in particular “Introduction to Theory of
Computation” by Sipser and course notes of U. of Toronto CS 364 and SFU CS 710. Special thanks to
Richard Bajona for scribing

1

Turing machine on this string ending in an accept state). Similarly, a co-semi-decidable
language can be described using a universal quantifier, just by negating a formula describing
the language (e.g. ”for any string any computation (finite and correct) is not accepting”)
. The languages beyond semi-decidable and co-semi-decidable are, thus, described using a
combination of quantifiers. The number of quantifier alternations corresponds to the levels
of this (strict) hierarchy.

In this lecture we will only talk about languages described with just one quantifier alterna-
tion. But already in this case we cannot talk at all about a Turing machine corresponding
to this language (or its complement).

Example 2. Let L01 = {〈M〉 | M loops on 0 and accepts 1}. Note that the description of
this language has both a universal quantifier (”loop”= ”all finite computations are wrong”)
and an existential quantifier (”accept” = ”exists correct accepting computation”).

To prove that this language is neither semi-decidable nor co-semi-decidable we will use two
reductions. Let us use ATM as the ”hard problem”. To show that L01 is not co-semi-
decidable, we will reduce a not co-semi-decidable ATM to L01. Then, to show that L01 is not
semi-decidable we will reduce a non-semi-decidable ATM to L01.

First we will show that L01 is not co-semi-decidable by showing ATM ≤m L01. For that, by
definition of reduction, we will describe a computable function f(〈M,w〉) = 〈M ′〉 that for
any pair M,w constructs M ′ such that M accepts w if and only if M ′ loops on 0 and accepts
1. Since we are reducing a semi-decidable language (existential quantifier), we will force M ′

to always loop on 0, and will make its behaviour on 1 depend on whether M accepts w.

M’: on input x
for x 6= 0, x 6= 1 it does not matter what M ′ does. It could accept, or run M on w, anything. Say M ′ rejects.
if x = 0 then loop
if x = 1 then run M on w.
if M accepts, accept. If M rejects, loop (here, reject would also be correct).

Thus, M ′ always loops on 0, and accepts 1 if and only if M accepts w, just as we wanted.
This reduction shows that L01 is at least as hard as ATM , in particular, since ATM is not
co-semi-decidable, then neither is L01.

It remains to show that L01 is not semi-decidable. We will do it by reduction ATM ≤m L01.
That is, we will construct a computable function f which on input 〈M,w〉 produces M ′

which now will loop on 0 and accept 1 if and only if M does not accept w. Another
technicality is that since we are talking about complement of ATM , the language we are
reducing from contains all the ”garbage” – strings that do not encode Turing machines.
That is, ATM = {s|s 6= 〈M,w〉ors = 〈M,w〉 and M does not accept w}. So f(s), for
s 6= 〈M,w〉 would output something in L01: for example a description of a Turing machine

2

with transitions (q0, 1)→ (qaccept) and (q0, 0)→ (qloop, 0, R) where all transitions from qloop
go to qloop. This machine accepts 1 and loops on 0.

M’: on input x
for x 6= 0, x 6= 1 it does not matter what M ′ does. It could accept, or run M on w, anything. Say M ′ rejects.
if x = 1 then accept
if x = 0 then run M on w.
if M accepts, accept (reject is OK, just don’t loop). If M rejects, loop (here, it has to be loop).

Example 3. Let T be the language of “total” machines, that is, of machines that halt on
every input. T = {〈M〉 |M is a Turing Machine that halts on every input}.
Lemma 19. Neither T nor T is semi-decidable.

Proof. We first show that HaltB ≤m T, implying that HaltB ≤m T, implying that T is not
semi-decidable.

Let f(〈M〉) = 〈M ′〉 (and if input to f is not a proper encoding of a Turing machine, it is an
M ′ that just loops on every input). We will do an “all-or-nothing” reduction again:

M ′ : on input x
erase input and run M on the blank tape.
if M accepts, accept. If M rejects, reject.

We have M halts on the blank tape ⇔ M ′ halts on every input, so we are done.

We next show that HaltB ≤m T, implying that HaltB ≤m T, implying that T is not semi-
decidable. This reduction is a bit tricky.
Assume that the input for HaltB, and assume is well-formed: 〈M〉.
Let f(〈M〉) = 〈M ′〉 where M ′ is as follows.

M ′ :On input x
Simulate M on the blank tape for |x| steps;
if M halts within |x| steps, then M ′ goes into an infinite loop;
if M doesn’t halt within |x| steps, then M ′ halts (and, say, accepts).

Clearly M halts on the blank tape ⇔ M ′ is not a total machine.

Example 4. Let All = {〈M〉 |M is a Turing Machine that accepts every input}.

We will show in one shot that All is neither semi-decidable nor co-semi-decidable by reducing
T to it: T ≤ All. Now, f(〈M〉) = 〈M ′〉 where M ′ is the same as M except every occurrence
of qreject in M is changed to qaccept.

3

