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1 Reductions

Now we will proceed to show that many problems are undecidable (and some of them are not
semi-decidable, not co-semi-decidable or even neither semi- nor co-semi-decidabl). Rather
than adapting the proof of undecidability of ATM to other problems, we will use a concept
which is going to be used a lot for the rest of this course: the notion of a reduction. A
reduction is a method of “disguising” one problem as another, so if we can solve the disguised
one it can give us the solution to the original. This method is very useful for proving that
problems are hard: if you can disguise a hard problem as one in hand, then solving this
problem is at least as hard as solving the hard one.

Definition 14. A function f : Σ∗ → Σ∗ is computable if there is a Turing machine M that
halts on every input x with f(x) as its output on the tape.

Definition 15. Let L1, L2 ⊆ Σ∗. We say that L1 ≤m L2 if there is a computable function
f : Σ∗ → Σ∗ such that for all x ∈ Σ∗,
x ∈ L1 ⇔ f(x) ∈ L2.

Here, we need f to be computable so that it always gives us an answer. The notation ≤m

stands for “many-one reduction” or “mapping reduction”. It is many-one since f may map
many different instances of a problem to a single output.

Theorem 16. Let L1, L2 ⊆ Σ∗ such that L1 ≤m L2. Then

1) L1 ≤m L2

∗The material in this set of notes came from many sources, in particular “Introduction to Theory of
Computation” by Sipser and course notes of U. of Toronto CS 364. Many thanks to Richard Bajona for
taking notes!

1



2) If L2 is decidable then L1 is decidable.
(And hence, if L1 is not decidable then L2 is not decidable either).

3) If L2 is semi-decidable then L1 is semi-decidable.
(And hence, if L1 is not semi-decidable then neither is L2.)

Proof. 1) Say that L1 ≤m L2 via the computable function f . Then we also have L1 ≤m L2

via f , since x ∈ L1 ⇔ f(x) ∈ L2 implies that x ∈ L1 ⇔ f(x) ∈ L2.

2) Say that L2 = L(M2) where M2 is a Turing machine that halts on every input. Let M
be a Turing machine that computes f . We now define Turing machine M1 as follows.
On input x, M1 runs M on x to get f(x), and then runs M2 on f(x), accepting or rejecting
as M2 does. Clearly M1 halts on every input, and L1 = L(M1), so L1 is decidable.

3) Say that L2 = L(M2) where M2 is a Turing machine. Let M be a Turing machine that
computes f . We now define Turing machine M1 as follows.
On input x, M1 runs M on x to get f(x), and then runs M2 on f(x), accepting or rejecting
as M2 does if and when M2 halts. Clearly L1 = L(M1), so L1 is semi-decidable.

Question: is it true that ATM ≤m ATM? The answer is No: if it were true, then by the first
property above we would have ATM ≤m ATM . But by 3) above, that would mean that ATM

is semi-decidable. But if both a language and its complement are semi-decidable, then, as
we saw in the last class, the language would have to be decidable – which is a contradiction,
since ATM is undecidable. Thus, ATM is not reducible to ATM , and in fact, it is not reducible
to any co-semi-decidable language. So please don’t make a mistake of assuming that you
always prove undecidability by reducing ATM to a problem in hand – sometimes you have to
use ATM , if the problem you are working with is co-semi-decidable. Or, conceptually easier,
if the problem in hand is co-semi-decidable, then work with its complement all the way.

Now we can use this notion of reduction to prove that some languages are undecidable by
reducing languages for which we already know that (such as ATM) to them.

Example 1. Let HaltB = {〈M〉| TM M halts on blank input }. We will show that
ATM ≤m HaltB
Let x ∈ Σ∗, and assume that x = 〈M,w〉 where M is a Turing Machine.
(If x is not of this form, then we can let f(x) be anything not in HaltB. In general we will
assume that the input is “well-formed” since this will always be easy to test for.)

We will let f(x) = 〈M ′〉 where M ′ works as follows on a blank tape (we don’t care what M ′

does on a non-blank tape).

M ′ :on input x′

write w on the tape
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simulate M running on input w;
if and when M halts and accepts, M ′ halts and accepts;
if and when M halts and rejects, M ′ goes into an infinite loop.

Clearly f is computable. It is also easy to see that x ∈ ATM ⇔ f(x) ∈ HaltB, since
M accepts w ⇔ M ′ halts on blank tape.

Corollary 17. HaltB is not semi-decidable.

Proof. We know HaltB is semi-decidable but not decidable, so HaltB is not semi-decidable.

Example 2. Let NE be the language consisting of Turing Machines that accept a nonempty
language. That is, NE = {〈M〉 |M is a Turing Machine and L(M) 6= ∅}.

Lemma 18. NE is semi-decidable, but not decidable. (Hence, NE is not semi-decidable.)

Proof. We will design a Turing Machine MNE such that NE = L(MNE) MNE behaves as
follows:

MNE: on input x
if x is not of the form 〈M〉, reject
for i = 1 to ∞

run M on all inputs of length ≤ i for i steps;
if and when it is discovered that M accepts some input, MNE halts and accepts.

That is, MNE does the following (let Σ = {0, 1}): run M on all inputs of length ≤ 1 for 1
steps; if M accepted ε or 0 or 1 in one transition then accept; otherwise
run M on all inputs of length ≤ 2 for 2 steps; if M accepted one of ε, 0, 1, 00, 01, 10, 11 then
accept; otherwise
run M on all inputs of length ≤ 3 for 3 steps; etc.

Clearly NE = L(MNE), so NE is semi-decidable.

To show that NE is not decidable we will prove that HaltB ≤m NE.
Let x be an input for HaltB, and assume that x is well-formed, that is, x = 〈M〉.
Define f(x) = 〈M ′〉 where M ′ works as follows.

M ′ on input x
erase x and run M on the blank tape;
if and when M halts, M ′ halts and accepts.
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Clearly 〈M〉 ∈ HaltB⇔ 〈M ′〉 ∈ NE, so HaltB ≤m NE, so NE is not decidable.

This type of reduction, doing the same on all inputs can help with a surprising number of
problems. I like to call them “All-or-nothing” reductions. The resulting language is either
Σ∗ (and thus includes every subset one might be interested in) or ∅.
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