
CS 3719 (Theory of Computation and Algorithms) –
Lecture 4

Antonina Kolokolova∗

January 18, 2012

1 Undecidable languages

1.1 Church-Turing thesis

Let’s recap how it all started. In 1990, Hilbert stated a list of problems for mathematicians
of the next century; some of these problems asked to ”devise a procedure”; two of those prob-
lems are ”devise a procedure for solving an equation over integers (Diophantine equations)”
that you have seen in the first lecture, and ”devise a procedure that, given a statement of
mathematics, would decide if it is true or false”.

Alan Turing was working on Hilbert’s problem that asked for an algorithm that for any
statement of mathematics would state whether it is true or false; Gödel has shown (his
famous Incompleteness Theorem) that there are statements of mathematics for which such
answer cannot be given, but it remained open at that time whether there is such a procedure
for statements for which that answer could be given. There were several mathematicians
working on this problem at that time; notably, Alonco Church solved this problem (to give a
negative answer) at about the same time, by inventing lambda-calculus. Turing’s approach
is somewhat more computational: he defined a model of computation which we now call
the Turing machine, equivalent to Church’s model in terms of power, and used it to show
undecidability results, thus giving a negative answer to Hilbert’s problem.

Definition 13 (Church-Turing thesis). Anything computable by an algorithm of any kind
(our intuitive notion of algorithm) is computable by a Turing machine.

∗The material in this set of notes came from many sources, in particular “Introduction to Theory of
Computation” by Sipser and course notes of U. of Toronto CS 364. Many thanks to Richard Bajona for
taking notes!

1

Since this statement talks about an intuitive notion of algorithm we cannot really prove it;
all we can do is that whenever we think of a natural notion of an algorithm, show that this
can be done by a Turing machine.

In this lecture we will show that even though Turing machines are considered to be as
powerful as any algorithm we can think of, there are languages that are not computable by
Turing machines. Thus, for these languages, it is likely that no algorithm we can think of
would work.

We will present two proofs of existence of undecidable languages. The first proof is non-
constructive, using Cantor’s diagonalization. The second proof presents an actual language
that is undecidable.

1.2 Diagonalization

The Diagonalization method is used to prove that two (infinite) sets have different cardinal-
ities, that is, a set A is larger than the set B. By definition of cardinalities, this means that
there is no one-to-one correspondence between elements of the two set, so the elements of
A cannot be “enumerated” by elements of B. The proof is by contradiction: assume that
there is such a enumeration. Then, construct an element of A which is not in the list. In our
case, the larger set A will be the set of all languages (for simplicity, over Σ = {0, 1}, but any
alphabet with at least 2 symbols will work). And B will be the set of all Turing machines.

First, let us say how we describe languages. Recall that a characteristic string of a set
is an infinite string of 0s and 1s where, for a given order (usually lexicographic order) of
elements in the set there is a 0 in ith position in the string if ith element in the order is
not in the set and 1 if it is in the set. For example, for a set L = {1, 01} over {0, 1}∗
the characteristic string would be 00101000...00..., since out of the lexicographic ordering
{ε, 0, 1, 00, 01, 10, 11, 000, . . . } of {0, 1}∗ only the 3rd and 5th elements are in L. Thus, for
every language over {0, 1}∗ (or any alphabet with at least 2 elements) there is a (unique)
characteristic string describing this language.

Now, we need to describe Turing machines and state how to enumerate them (show that the
set of all Turing machines is countable). For that, we show that every Turing machine can
be encoded by a distinct finite binary string (and is thus a subset of all finite binary strings,
which is countable since every string can be treated as a binary number with the leading 1
missing).

To encode a Turing machine, it is sufficient to write, in binary, the tuple (Q,Σ,Γ, δ, q0, qaccept, qreject).
However, we are not interested in specific names of symbols in Q,Σ,Γ; we are just interested
in how many symbols are in each. A Turing machine which accepts all even-length strings
over {a, b} operates exactly the same way as a Turing machine accepting all even-length
strings over {0, 1}, with a changed to 0 and b changed to 1 everywhere in its description.

2

We assign an order to elements of Q, Σ and Γ, and refer to elements as 1st symbol of Σ, 5th
state in Q and so on. So all we need to write is the number of states in Q (for simplicity,
we can even rename states to have q0 be the first state in the list, qaccept second and qreject
third, since every Turing machine will have these three states), number of symbols in Σ and
Γ (say Γ consists of Σ followed by t followed by possible extra symbols). Finally, we need
to write out δ, using the indices of symbols in Q, Σ and Γ in the description of transitions.

Here is one way of doing the description. We can start by writing |Q| 1s, then a 0, then
|Σ| 1s, then another 0, then |Γ| 1s, and a 0 again. We could also write all elements of δ in
unary (since it is finite), but we can also do so in binary, by introducing a special “separator”
symbol , into Σ. If we have to stick to Σ = {0, 1}, then we can still write δ in binary as
follows: associate “11” with ,, “00” with 0 and “01” with 1. For example, say we want
to encode a transition (q3, a) → (q4, b, L). With separators, it can be coded in binary as
11, 0, 100, 1, 0 (here, code L by 0 and R by 1). Using the transformation to encode the
transition in binary obtain 010111001101000011011100. Note that this method of coding
allows us to talk about all sorts of objects as an input to a Turing machine, be it Java code
or descriptions of graphs.

Notation 1. We will use the notation 〈M〉 to mean a binary string encoding of a Turing
machine M . We can use the same notation to talk about encodings of other objects, e.g.
〈M,w〉 encodes a pair Turing machine M and a string w; 〈N〉 encoding a NFA N , 〈G〉 for
a graph G and so on,

Now, notice that for every Turing machine there is a finite binary description. Treating
this description as a binary number, obtain an enumeration (by a subset of N of all Turing
machines. Finally, we can do the diagonalization argument. Start by assuming that it is
possible to enumerate all languages by Turing machines. Write elements of characteristic
strings as columns, and Turing machine descriptions as rows. Put a 1 in cell (i, j) if the
ith Turing machine Mi accepts string number j in the enumeration, and 0 if it does not
accept this string. We obtain a table as in the following example (for different enumerations
of Turing machines the 0s and 1s would be different), and use diagonalization argument to
construct a language not recognized by any Turing machine. Indeed, if that language were
recognized by some Turing machine, say Mk, it would be the string in the kth row of the
table; however, it differs from the diagonal language in kth element.

M1 0 0 1 1 0 1 1 0 1
M2 1 1 1 1 1 0 0 1 1
M3 1 0 0 0 0 1 1 1 1
M4 1 1 0 1 1 0 0 1 1
M5 0 0 1 1 1 1 1 0 0
ots

...
...

...
...

...
...

...
...

...
...

D 1 0 1 0 0 1 1 0 1

3

1.3 Universal Turing machine and undecidability of ATM

In this section we will present a specific, very natural problem and show that it is undecidable.
It will lead us to a whole class of problems of similar complexity.

Definition 14. The language ATM = {〈M,w〉|M is a Turing machine and w is a string
over the input alphabet of M and M accepts w}

That is, the language ATM consists of all pairs M,w of Turing machine + a string in L(M).

Theorem 15. ATM is semi-decidable, but not decidable.

Proof. Let us first show that ATM is semi-decidable. That is, there exists a Turing machine
MATM

accepting all and only strings in ATM . Note that if M does not halt on w, neither
does MATM

on 〈M,w〉

MATM
: On input 〈M,w〉

Simulate M on w. If M accepts w, accept. If M rejects w, reject.

Note that the above algorithm is essentially an interpreter; that is a program which takes
as input both a program P and an input w to that program, and simulates P on input
w. In this case the program P is given by a Turing machine M . In particular, the Turing
machine ”interpreter” MATM

is known under the name of a Universal Turing Machine.
Turing described a universal Turing machine in some detail in his original 1936 paper, an
ideal which paved the way for later interpreters operating on real computers. This is quite
a meta-mathematical concept, though: a single Turing machine, and a simple one at that,
that could ”do the job” of any other Turing machine provided it is given the description of
the TM it is supposed to simulate and a string to work on.

Now, let us show that ATM is not decidable. Assume for the sake of contradiction that it is,
so there is a Turing machine H that takes as an input 〈M,w〉 and halts either accepting (if
M accepted w) or rejecting (if M did not accept w). Now, define the following language:

Diag = {〈M〉|M is a Turing machine and 〈M〉 /∈ L(M)}.

That is, Diag is a language of all descriptions of Turing machines that do not accept a string
that is their own encoding. This is exactly the diagonal language from our diagonalization
table.

Now, notice that H deciding ATM can also be used to decide Diag: H(〈(M, 〈M〉)〉) halts and
accepts if M accepts its own encoding and rejects if M does not accept its own encoding. A
decider HDiag for Diag would run H(〈(M, 〈M〉)〉) and accept if H rejects, reject if H accepts.
But what should it do on input 〈HDiag〉? It cannot accept this input, since that would mean

4

that HDiag accepts its own encoding, so it should not be in Diag. And it cannot reject its
own encoding, since it would make it a Turing machine not accepting its own encoding and
thus it has to be in Diag. Contradiction.

This contradiction is akin to Russell’s paradox from logic, and other self-referential paradoxes
of the form “I am lying”.

1.4 Closure properties of decidable and semi-decidable languages

Now, here is a question. Suppose you are given two languages, L1 and L2. What can you
say about a language L1 ∪ L2 = {x | x ∈ L1 or x ∈ L2? For example, suppose you are
interested in all strings either code Turing machines or are prime numbers when viewed as
a binary number; in this case, your L1 could be all encodings of Turing machines and L2 all
prime numbers. Similarly, you may want to ask about L1 ∩L2 which contains strings which
are in both languages (that is, encodings of TMs which are primes when viewed as binary
numbers, in our example.) Suppose you know that L1 and L2 are both decidable, or both
semi-decidable – what does it tell you about decidability (semi-decidability) of their union
and intersection?

Theorem 16. The class of semi-decidable languages is closed under union and intersection
operations.

Proof. Let L1 and L2 be two semi-decidable languages, and let M1,M2 be Turing machines
such that L(M1) = L1 and L(M2) = L2. We will construct Turing machines ML1∪L2 and
ML1∩L2 accepting union and intersection of L1 and L2, respectively.

Consider the union operation first; intersection will be similar. Let x be the input for which
we are trying to decide whether it is in L1 ∪ L2. The first idea could be to try to run M1

on x, and if it does not accept, then run M2 on x. But M1 is not guaranteed to stop on x,
and we would still like to accept x if M2 accepts it. So the solution is to run M1 and M2 in
parallel, switching between executing one or the other. If at some point in the computation
either M1 or M2 accepts, we accept; if neither accepts, can run forever – but this is OK,
because if neither M1 nor M2 accepts x then x /∈ L1 ∪ L2. So we define ML1∪L2 as follows:

ML1∪L2 : On input x
Fori = 1 to ∞

Run M1 on x for i steps. If M1 accepts, accept.
Run M2 on x for i steps. If M2 accepts, accept.

5

The intersection, in this case, is very similar. The only difference is that we accept at stage
i if not just one, but both M1 and M2 accepted in i st eps.

Corollary 17. ATM is not semi-decidable. Moreover, complement of any semi-decidable,
but undecidable language is not semi-decidable.

Proof. Otherwise, running Turing machines MATM
and MATM

simultaneously, as in the proof
above, we could decide ATM . Same holds for any semi-decidable, but undecidable language.

This shows that the class of semi-decidable languages is different (incomparable) from the
class of co-semi-decidable ones. Also, there are languages that are neither semi-decidable
nor co-semi-decidable. For example, consider a simple language 0 − 1Atm = {< M,w > |
TM M accepts 01 and loops on 1w}.

Intuitively, testing if < M,w > is in the language requires solving an ATM problem and a
ATM problem. The first one makes it not co-semi-decidable, the second not semi-decidable.

6

