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A Turing machine M recognizes a language L if it accepts all and only strings in L: that is,
Vo € ¥, M accepts z iff z € L. As before, we write L(M) for the language accepted by M.

Definition 13. A language L is called Turing-recognizable (also recursively enumerable,
r.e, or semi-decidable) if 3 a Turing machine M such that L(M) = L.

A language L is called decidable (or recursive) if 3 a Turing machine M such that L(M) =
L, and additionally, M halts on all inputs x € ¥*. That is, on every string M either enters
the state Gaccept OT Greject PN Some point in computation.

It is possible to define a Turing machine producing an output; in that case, the Turing
machine halts in an accepts state, with the tape clear except for the output and head
pointing to the first symbol of the output.

Remark 1. One reason that these languages are called “recursively enumerable” is that
it is possible to “enumerate” all strings in such a language by a special type of Turing
machine, enumerator. This Turing machine starts on blank input and runs forever; as it
runs, it outputs (e.g., on some additional tape or part of the main tape) all the strings in
the language. It is allowed to print the same string multiple times, as long as it does not
print anything not in the language and eventually print every string that is in the language.
See Sipser’s book for a formal definition and a proof of equivalence.

0.1 Multi-tape Turing machine

Often it is convenient to describe a Turing machine using several tapes, each dedicated to a
specific function. For example, if we want to simulate a random-access machine, we can have
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a dedicated “address tape” where the machine writes the address of the cell it wants to visit
next. Let us define a k-tape Turing machine to have k tapes, with a separate head on each
tape, and a transition function 6 : Q x T* — @Q x I'* x {L, R}*. That is, now for every state
there are k characters the heads are pointing to, and, respectively, k-tuple of characters to
overwrite the current ones and k-tuple of directions, one for each tape. Note that there is
just one state, not k.

Here we will show that this definition is equivalent to the traditional one-tape Turing ma-
chine. There are several ways to do this simulation, similar to two ways of simulating a
two-way tape Turing machine by a one-way tape TM. In the first case, we write strings
corresponding to (non-blank part of ) the tapes one after another, with a delimiter between
strings on different tapes. Then, whenever a new symbol needs to be added, the rest of the
tapes is shifted (just like putting a new symbol to the left of the used part of the tape in
simulating two-way tape TM by one-way). Here, we use special symbols (“marked” versions
of symbols of T') to represent a symbol with head pointing to it.

Another, a more interesting way is to expand the alphabet to make a symbol of each k-tuple
(for k tapes) of symbols of the original alphabet (also with marked versions of symbols of
['). This is similar to the second way of simulating two-way tape TM, where we used new
symbols for the pairs of symbols from I'; again, we need markers for the head positions.

In both cases, the Turing machine works by scanning all tape from the beginning to the
end noting head positions and symbols under them. On the way back, it makes the changes
according to the transition table.

Note that for some problems multi-tape Turing machine is faster than single-tape. For
example, the Palindrome problem can be solved in linear time on a multi-tape Turing machine
by copying the string from input tape to the second tape, then moving one of the heads to
the beginning of the tape, and finally moving the heads in opposite direction on two tapes
comparing the numbers. It is possible to show, though, that this is about as bad as it gets:
the simulation above runs in roughly O of the square of the time of the original Turing
machine.

0.2 Non-deterministic Turing machines

Recall from the previous lecture that in non-deterministic computation, the transition func-
tion §, rather than giving exactly one choice for the next step, gives a (possibly empty, but
finite) set of choices. So the non-deterministic computation is not a sequence, but rather a
tree, and it is successful (accepting) if at least one leaf is accepting. We call one branch of
this tree a computational path. Each such path can be described by a sequence of choices
the Turing machine made. The arity d of the tree is the maximum over all ¢ € Q,a € " of
|0(g,a)|. So each node in the tree can be described by a sequence of numbers each from 1



to d saying which transition was chosen from a set (in, say, lexicographic order). Of course,
some sequences do not correspond to any node, but it is OK as long as any node has a unique
sequence describing it.

Example 1. Consider a Turing machine for testing if a number is composite (not prime)
that works as follows. It goes to the end of the input, puts some separator there, and starts
writing out a number: in the corresponding state ¢, on every step, it can either write a 1
and move right keeping the state ¢, or write a 0 and move right also remaining in ¢, or write
a blank, change the state to some ¢ and start moving backward. At this point, there are
two numbers written on the tape, and the Turing machine checks if the new number is > 2,
not equal to the input and divides the input; if so, it accepts, otherwise rejects. That is, the
machine “guesses” a number, and checks if this is a correct divisor of the input. Now, if the
number is composite, then there would be some number that divides it; the corresponding
computation branch will end in Accept, and therefore, the non-deterministic Turing machine
accepts. If the number is prime, then no branch will accept. Note that in this case there
are branches that are infinite: imagine a sequence of choices that never chooses the third
possibility.

We will show here that it is possible to simulate a non-deterministic Turing machine by a
deterministic one, although this simulation is not efficient. This efficiency issue is one of
the main open problems in theoretical computer science, the famous P vs. NP question,
whether efficient non-deterministic Turing machine computation can always be simulated by
an efficient deterministic one. We will define precisely what we mean by efficient in a few
lectures.

In order to simulate non-deterministic computation by deterministic we need to find if there
is an accepting leaf in its computation tree. Since it is a Turing machine, there may be infinite
branches in the tree (corresponding to infinite loops of the Turing machine), so we cannot
do a depth-first search of this tree. However, we can do a breadth-first search. If we don’t
care at all about efficiency, we can do the simulation by just remembering which node we
were in last, and restarting the computation from the beginning, making non-deterministic
choices according to the path to the next node.

For simplicity, let’s use the multi-tape Turing machine we just defined. Suppose our TM
has three tapes: an input tape on which it will not write, a work tape, and a “address”
tape, which in this case will keep track of the current computation branch. The address of
a node here is a the sequence of choices that led to this node. The machine will work as
follows: at every stage of the computation, starting with writing 0 on the address tape, it
will run the computation from the start to the next non-deterministic choice following the
sequence of choices written on the address tape. When it reaches a choice not on the tape, it
will increment the address tape to the next node in the breadth-first order, and restart the
computation. If one of the choices leads to a non-existing transition or reject state, abort
the computation, increment the node and restart. If geqept is reached, accept.



Since this Turing machine will eventually get to all nodes in every level, if there is an
accepting leaf it will be found. Otherwise it will run forever. A check can be added to see if
all nodes on the last level aborted and then reject.



