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Last lecture we started describing a Turing machine. Let us now give a formal definition of
it.

Definition 12. Formally, a Turing machine is a 7-tuple M = (Q, Σ, Γ, δ, q0, qaccept, qreject).
Here, Q is a finite set of states, with three special states q0 (start state), qaccept and qreject.
The last two are called the halting states, and they cannot be equal. Σ a finite input alphabet.
Γ is a tape alphabet which includes all symbols from Σ and a special symbol for blank, t.
Finally, the transition function is δ : Q × Γ → Q × Γ × {L, R} where L, R mean move left
or right one step on the tape.

The Turing machine M works as follows on input string x ∈ Σ∗.
Initially x appears on the tape starting from its left end, with infinitely many blanks to the
right, and with the head pointing to the leftmost symbol of x. (If x is the empty string, then
the tape is completely blank and the head is pointing to the leftmost square.) The control
is initially in state q0.
M moves according to the transition function δ.
M may run forever, but if it halts, then it halts either in state qaccept or qreject. (We will
mainly be interested in whether M accepts or rejects; there are definitions of what it means
for a Turing machine to output a string: e.g., the output is what is left on the tape when
the machine halts)

Definition 13. M accepts a string x ∈ Σ∗ if M with input x eventually halts in state qaccept.
We write L(M) = {x ∈ Σ∗|M accepts x}, and we refer to L(M) as the language accepted by
M .

(Notice that we are abusing notation, since we refer both to a Turing machine accepting a
string, and to a Turing machine accepting a language, namely the set of strings it accepts.)

Example 1. PARITY= the set of all binary strings that have an even number of 1s =
{x|x ∈ {0, 1}∗, x has even number of occurrences of symbol 1}.
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A very simple Turing machine recognizes the
set of such strings in time linear in the number
of symbols in the strings. For that, it moves
once through the string from left to right, at
each point remembering whether the number
of 1s it has seen so far is even or odd. If by
the time it reaches a blank symbol it has seen
an even number of 1s, the Turing machine ac-
cepts, and if it has seen an odd number of 1s,
it rejects.

State q Symbol s Action δ(q, s)
q0 0 (q0, b/, R)
q0 1 (q1, b/, R)
q0 b/ (qaccept, b/, L)
q1 0 (q1, b/, R)
q1 1 (q0, b/, R)
q1 b/ (qreject, b/, L)

A more complicated example is a Turing machine recognizing the set of palindromes.

Example 2. PAL = the set of even length palindromes =
{yyr|y ∈ {0, 1}∗, where yr means y spelled backwards.

We will design a Turing machine M that accepts the language PAL⊆ {0, 1}∗. M will have
input alphabet Σ = {0, 1}, and tape alphabet Γ = {0, 1, b/}. (Usually it is convenient to let
Γ have a number of extra symbols in it, but we don’t need to for this simple example.) We
will have state set Q = {q0, q1, q2, q3, q4, q5, qaccept, qreject}.

If, in state q0, M reads 0, then that symbol is replaced
by a blank, and the machine enters state q1; the role of
q1 is to go to the right until the first blank, remembering
that the symbol 0 has most recently been erased; upon
finding that blank, M enters state q2 and goes left one
square looking for symbol 0; if 0 is not there then we
reject, but if 0 is there, then we erase it and enter state
q3 and go left until the first blank; we then goes right
one square, enter state q0, and continue as before.
If we read 1 in state q0, then we operate in a manner
similar to that above, using states q4 and q5 instead of
q1 and q2.
If we read b/ in state q0, this means that all the characters
of the input have been checked, and so we accept.
Formally, the transition function δ is as follows. (Note
that when we accept or reject, it doesn’t matter what
we print or what direction we move in; we arbitrarily
choose to print b/ and move right in these cases.)

State q Symbol s Action δ(q, s)
q0 0 (q1, b/, R)
q1 0 (q1, 0, R)
q1 1 (q1, 1, R)
q1 b/ (q2, b/, L)
q2 1 (qreject, 0, R)
q2 b/ (qreject, 0, R)
q2 0 (q3, b/, L)
q3 0 (q3, 0, L)
q3 1 (q3, 1, L)
q3 b/ (q0, b/, R)
q0 1 (q4, b/, R)
q4 0 (q4, 0, R)
q4 1 (q4, 1, R)
q4 b/ (q5, b/, L)
q5 0 (qreject, 0, R)
q5 b/ (qreject, 0, R)
q5 1 (q3, b/, L)
q0 b/ (qaccept, 0, R)

Even though we will mainly talk about Turing machines just accepting or rejecting a string, it
is possible to define a Turing machine producing an output. In that case, the Turing machine
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halts in an accepts state, with the tape clear except for the output and head pointing to the
first symbol of the output.

Example 3 (+1 operation). Here we will show a Turing machine M which takes as its input
a string in binary and adds 1 to it. That is, it will halt in an accept state pointing to the
first non-empty symbol, and the content of the tape will be input plus 1.

M = (Q, {0, 1}, {0, 1,t}, δ, q0, qaccept, qreject).

To add 1 to a binary number, the usual algo-
rithm is to start from the last bit, add 1 to it,
and propagate the possible carry as much as
needed, to the closest 0 or blank from the end.
For example, to add 1 to string 1011 we need
to propagate the carry to the second symbol,
0, while flipping the 1s.

0 1 t
q0 (q0, 0, R) (q0, 1, R) (qc,t, L)
qc (qn, 1, L) (qc, 0, L) (qaccept, 1, R)
qn (qn, 0, L) (qn, 1, L) (qaccept,t, R)

Our Turing machine implements this algorithm as follows. It starts by scanning the input
to the end of the input string, staying in q0. After that, it starts moving backward, using
two states: a “carry” qc state and “no carry” state qn. In the “carry” state, it flips a bit,
and if the bit was a 1, remains in the carry state, otherwise goes to non-carry. In no carry
state it scans back to the start of the string and there goes to the accept state.

Definition 14. Let us define more formally what is a computation of a Turing machine.
To describe a computation of a Turing machine we need to specify, at every point in time,
its state, head position, and (non-blank) content of the tape. This information we will call
a configuration of a Turing machine. For convenience, we will write a configuration as the
string that is the sequence of non-blank symbols of the tape (assuming there are no blanks
between non-blanks), with the symbol for the current state in a position right before the cell
it points to. For example, the starting configuration of a Turing machine on input 0011 is
q00011; after a transition (q0, 0) → (q5, 1, R) the machine goes to the configuration 1q5011.

Now, a Turing machine M accepts a string w if there is a sequence of configurations starting
from q0w and ending in a configuration containing qaccept, with every configuration in the
sequence resulting from a previous one by a transition in δ of M .

So far we have looked at Turing machines for which for any state+symbol pair (qi, a) there
is only one possible transition: e.g., (qi, a) → (qj, b, {L, R}) (where {L, R} means left or
right, whichever the transition specifies). If this rule holds, then the Turing machine is
deterministic. Otherwise, it is called non-deterministic. The idea is that a non-deterministic
Turing machine can pick any of the possible transitions; as long as at least one ssequence
of choices leads to an accepting configuration, it is said to accept. That is, rather than
talking about a single computation here we have a “tree” of computations, where each
branching point corresponds to a choice of a transition, and each path from the root (starting
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configuration) to a leaf (halting configuration) is a computation path. The non-deterministic
Turing machine accepts if there exists at least one accepting computation.

Example 4. Consider the following non-deterministic Turing machine which tries to deter-
mine if its input contains a symbol 1. It will scan the input from left to right; when it sees
a 1, it would either accept or continue scanning as if nothing has happened.

State q Symbol s Action δ(q, s)
q0 0 (q0, 0, R)
q0 1 (q0, 1, R)
q0 1 (qaccept, b/, R)
q0 b/ (qreject, b/, R)

Now, on input 1101, there are four possible computation paths:

1) q01101 → 1qa101
2) q01101 → 1q0101 → 11qa01
3) q01101 → 1q0101 → 11q001 → 110q01 → 1101qa

4) q01101 → 1q0101 → 11q001 → 110q01 → 1101q0 → 1101qr

Since at least one of them (three, actually) is accepting, this Turing machine accepts 1101.
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