
Midterm study sheet for CS3719

Regular languages and finite automata:

• An alphabet is a finite set of symbols. Set of all finite strings over an alphabet Σ is denoted Σ∗. A
language is a subset of Σ∗. Empty string is called ε (epsilon).

• Regular expressions are built recursively starting from ∅, ε and symbols from Σ and closing under
Union (R1 ∪R2), Concatenation (R1 ◦R2) and Kleene Star (R∗ denoting 0 or more repetitions of R)
operations. These three operations are called regular operations.

• A Deterministic Finite Automaton (DFA) D is a 5-tuple (Q,Σ, δ, q0, F), where Q is a finite set of
states, Σ is the alphabet, δ : Q×Σ → Q is the transition function, q0 is the start state, and F is the
set of accept states. A DFA accepts a string if there exists a sequence of states starting with r0 = q0

and ending with rn ∈ F such that ∀i, 0 ≤ i < n, δ(ri, wi) = ri+1. The language of a DFA, denoted
L(D) is the set of all and only strings that D accepts.

• Deterministic finite automata are used in string matching algorithms such as Knuth-Morris-Pratt
algorithm.

• A language is called regular if it is recognized by some DFA.

• ‘Theorem: The class of regular languages is closed under union, concatenation and Kleene star
operations.

• A non-deterministic finite automaton (NFA) is a 5-tuple (Q,Σ, δ, q0, F), where Q, Σ, q0 and F
are as in the case of DFA, but the transition function δ is δ : Q × (Σ ∪ {ε}) → P(Q). Here,
P(Q) is the powerset (set of all subsets) of Q. A non-deterministic finite automaton accepts a
string w = w1 . . . wm if there exists a sequence of states r0, . . . rm such that r0 = q0, rm ∈ F and
∀i, 0 ≤ i < m, ri+1 ∈ δ(ri, wi).

• Theorem: For every NFA there is a DFA recognizing the same language. The construction sets
states of the DFA to be the powerset of states of NFA, and makes a (single) transition from every set
of states to a set of states accessible from it in one step on a letter following with all states reachable
by (a path of) ε-transitions. The start state of the DFA is the set of all states reachable from q0 by
following possibly multiple ε-transitions.

• Theorem: A language is recognized by a DFA if and only if it is generated by some regular ex-
pression. In the proof, the construction of DFA from a regular expression follows the closure proofs
and recursive definition of the regular expression. The construction of a regular expression from a
DFA first converts DFA into a Generalized NFA with regular expressions on the transitions, a sin-
gle distinct accept state and transitions (possibly ∅) between every two states. The proof proceeds
inductively eliminating states until only the start and accept states are left.

• Lemma The pumping lemma for regular languages states that for every regular language A there
is a pumping length p such that ∀s ∈ A, if |s| > p then s = xyz such that 1) ∀i ≥ 0, xyiz ∈ A. 2)
|y| > 0 3) |xy| < p. The proof proceeds by setting p to be the number of states of a DFA recognizing
A, and showing how to eliminate or add the loops. This lemma is used to show that languages such
as {0n1n}, {wwr} and so on are not regular.

1

Context-free languages and Pushdown automata.

• A pushdown automaton (PDA) is a “NFA with a stack”; more formally, a PDA is a 6-tuple (Q,Σ,Γ, δ, q0, F)
where Q is the set of states, Σ the input alphabet, Γ the stack alphabet, q0 the start state, F is the
set of finite states and the transition function δ : Q× (Σ ∪ {ε})× (Γ ∪ {ε}) → P(Q× (Γ ∪ {ε})).

• A context-free grammar (CFG) is a 4-tuple (V,Σ, R, S), where V is a finite set of variables, with
S ∈ V the start variable, Σ is a finite set of terminals (disjoint from the set of variables), and R is
a finite set of rules, with each rule consisting of a variable followed by − > followed by a string of
variables and terminals.

• . Let A → w be a rule of the grammar, where w is a string of variables and terminals. Then A can
be replaced in another rule by w: uAv in a body of another rule can be replaced by uwv (we say
uAv yields uwv,denoted uAv ⇒ uwv). If there is a sequence u = u1, u2, . . . uk = v such that for all i,
1 ≤ i < k, ui ⇒ ui+1 then we say that u derives v (denoted v

∗⇒ v.) If G is a context-free grammar,
then the language of G is the set of all strings of terminals that can be generated from the start
variable: L(G) = {w ∈ Σ∗|S ∗⇒ w}. A parse tree of a string is a tree representation of a sequence of
derivations; it is leftmost if at every step the first variable from the left was substituted. A grammar
is called ambiguous if there is a string in a grammar with two different (leftmost) parse trees.

• A language is called a context-free language (CFL) if there exists a CFG generating it.

• Theorem Every regular language is context-free.

• Theorem A language is context-free iff some pushdown automaton recognizes it. The proof of one
direction constructs a PDA from the grammar (by having a middle state with “loops” on rules;
loops consist of as many states as needed to place all symbols in the rule on the stack). The proof
for another direction constructs a grammar that for every pair of states has a variable and a rule
generating strings for a sequence of steps between these states keeping stack content.

• Lemma The pumping lemma for context-free languages states that for every CFL A there is a
pumping length p such that ∀s ∈ A, if |s| > p then s = uvxyz such that 1) ∀i ≥ 0, uvixyiz ∈ A.
2) |vy| > 0 3) |vxy| < p. The proof proceeds by analyzing repeated variables in large parse trees,
setting the pumping length to d|V |+1 where d is the length (number of symbols) of the longest rule.
This lemma is used to show that languages such as {anbncn}, {ww} and so on are not regular.

• Theorem The class of CFLs is not closed under complementation and intersection (although it is
closed under union, Kleene star and concatenation).

• Theorem There are context-free languages not recognized by any deterministic PDA. (No proof
given in class).

Turing machines and decidability.

• A Turing machine is a finite automaton with an infinite memory (tape). Formally, a Turing machine
is a 6-tuple M = (Q,Σ,Γ, δ, q0, qaccept, qreject). Here, Q is a finite set of states as before, with three
special states q0 (start state), qaccept and qreject. The last two are called the halting states, and they
cannot be equal. Σ a finite input alphabet. Γ is a tape alphabet which includes all symbols from Σ
and a special symbol for blank, t. Finally, the transition function is δ : Q × Γ → Q × Γ × {L,R}
where L,R mean move left or right one step on the tape.

• Equivalent (not necessarily efficiently) variants of Turing machines:two-way vs. one-way infinite tape,
multi-tape, non-deterministic, FIFO (queue) automaton.

2

• Church-Turing Thesis Anything computable by an algorithm of any kind (our intuitive notion of
algorithm) is computable by a Turing machine.

• A Turing machine M accepts a string w if there is a sequence of configurations (state,non-blank
memory,head position) starting from q0w and ending in a configuration containing qaccept, with every
configuration in the sequence resulting from a previous one by a transition in δ of M . A Turing
machine M recognizes a language L if it accepts all and only strings in L: that is, ∀x ∈ Σ∗, M
accepts x iff x ∈ L. As before, we write L(M) for the language accepted by M .

• A language L is called Turing-recognizable (also recursively enumerable, r.e, or semi-decidable) if ∃ a
Turing machine M such that L(M) = L. A language L is called decidable (or recursive) if ∃ a Turing
machine M such that L(M) = L, and additionally, M halts on all inputs x ∈ Σ∗. That is, on every
string M either enters the state qaccept or qreject in some point in computation. A language is called co-
semi-decidable if its complement is semi-decidable. Semi-decidable languages can be described using
unbounded ∃ quantifier over a decidable relation; co-semi-decidable using unbounded ∀ quantifier.
There are languages that are higher in the arithmetic hierarchy than semi- and co-semi-decidable;
they are described using mixture of ∃ and ∀ quantifiers and then number of alternation of quantifiers
is the level in the hierarchy.

• Decidable languages are closed under intersection, union, complementation, Kleene star, etc. Semi-
decidable languages are not closed under complementation, but closed under intersection and union.

• If a language is both semi-decidable and co-semi-decidable, then it is decidable.

• Encoding languages and Turing machines as binary strings.

• Undecidability; proof by diagonalization. ATM is undecidable.

• A many-one reduction: A ≤m B if exists a computable function f such that ∀x ∈ Σ∗
A, x ∈ A ⇐⇒

f(x) ∈ B. To prove that B is undecidable, (not semi-decidable, not co-semi-decidable) pick A which
is undecidable (not semi, not co-semi.) and reduce A to B.

• Know how to do reductions and place languages in the corresponding classes, similar to the assign-
ment.

• Examples of undecidable languages; know that {〈M〉 | LM is regular} is already undecidable.

Complexity theory, NP-completeness

• A Turing machine M runs in time t(n) if for any input of length n the number of steps of M is at
most t(n).

• A language L is in the complexity class P (stands for Polynomial time) if there exists a Turing
machine M , LM = L and M runs in time O(nc) for some fixed constant c. The class P is believed
to capture the notion of efficient algorithms.

• A language L is in the class NP if there exists a polynomial-time verifier, that is, a relation R(x, y)
computable in polynomial time such that ∀x, x ∈ L ⇐⇒ ∃y, |y| ≤ c|x|d ∧R(x, y). Here, c and d are
fixed constants, specific for the language.

• A different, equivalent, definition of NP is a class of languages accepted by polynomial-time non-
deterministic Turing machines. The name NP stands for “Non-deterministic Polynomial-time”.

• P ⊆ NP ⊆ EXP, where EXP is the class of languages computable in time exponential in the length of
the input.

3

• Examples of languages in P: all regular and context-free languages, connected graphs, relatively prime
pairs of numbers (and, quite recently, prime numbers), etc.

• Examples of languages in NP: all languages in P, Clique, Hamiltonian Path, SAT, etc. Technically,
functions computing an output other than yes/no are not in NP since they are not languages.

• Major Open Problem: is P = NP? Widely believed that not, weird consequences if they were, including
breaking all modern cryptography and automating creativity.

• If P = NP, then can compute witness y in polynomial time.

• Polynomial-time reducibility : A ≤p B if there exists a polynomial-time computable function f such
that ∀x ∈ Σ, x ∈ A ⇐⇒ f(x) ∈ B.

• A language L is N-hard if every language in NP reduces to L. A language is NP-complete it is both in
NP and NP-hard.

• Cook-Levin Theorem states that SAT is NP-complete. The rest of NP-completeness proofs we saw
are by reducing SAT (3SAT) to the other problems (also mentioned a direct proof for CircuitSAT in
the notes).

• Examples of NP-complete problems with the reduction chain:

– SAT ≤p 3SAT

– 3SAT ≤p IndSet ≤p Clique, IndSet ≤p V ectorCover

– Hampath ≤p HamCycle ≤p TSP (skipped 3SAT ≤p HamPath; see the book.)

– 3SAT ≤p SubsetSum ≤p Partition ≤p Knapsack. Reduction relies on numbers in binary;
unary case solvable by dynamic programming in polynomial time.

• Search-to-decision reductions: given an “oracle” with yes/no answers to the language membership
(decision) problem in NP, can compute the solution in polynomial time with polynomially many
yes/no queries. Similar idea to computing a witness if P = NP.

Self-replication and recursion theorem

• A Turing machine (or any general computational model) is capable of writing its own description as
an output.

• Proof idea: There is a function q, q(w) = 〈Pw〉 where L(Pw) = {w}. Now, make the string say:
Print the following sentence, second time in quotes
‘‘Print the following sentence, second time in quotes’’

• Recursion theorem: let TM T compute function t. Then there exists a TM R that on input w
computes t(〈R〉, w). That is, R does on a string what t would do on a pair a description of a TM
and a string.

4

