Midterm study sheet for CS3719

Regular languages and finite automata:

An alphabet is a finite set of symbols. Set of all finite strings over an alphabet X is denoted ¥*. A
language is a subset of ¥*. Empty string is called € (epsilon).

Regular expressions are built recursively starting from), e and symbols from ¥ and closing under
Union (R U Ry), Concatenation (R; o Ry) and Kleene Star (R* denoting 0 or more repetitions of R)
operations. These three operations are called regular operations.

A Deterministic Finite Automaton (DFA) D is a 5-tuple (@, 3,0, qo, F'), where @ is a finite set of
states, X is the alphabet, § : Q x X — (@ is the transition function, gq is the start state, and F' is the
set of accept states. A DFA accepts a string if there exists a sequence of states starting with ro = qq
and ending with r, € F such that Vi,0 < i < n,d(r;,w;) = ri+1. The language of a DFA, denoted
L(D) is the set of all and only strings that D accepts.

Deterministic finite automata are used in string matching algorithms such as Knuth-Morris-Pratt
algorithm.

A language is called regular if it is recognized by some DFA.

‘Theorem: The class of regular languages is closed under union, concatenation and Kleene star
operations.

A non-deterministic finite automaton (NFA) is a 5-tuple (@, X, 9, qo, F'), where Q, X, qo and F
are as in the case of DFA, but the transition function § is § : @ x (¥ U {e}) — P(Q). Here,
P(Q) is the powerset (set of all subsets) of (). A non-deterministic finite automaton accepts a
string w = wj ... w,, if there exists a sequence of states rg,...r, such that ro = qo, r,n € F and
Vi, 0 <i<m,rip1 € 6(ry, w;).

Theorem: For every NFA there is a DFA recognizing the same language. The construction sets
states of the DFA to be the powerset of states of NFA, and makes a (single) transition from every set
of states to a set of states accessible from it in one step on a letter following with all states reachable
by (a path of) e-transitions. The start state of the DFA is the set of all states reachable from gg by
following possibly multiple e-transitions.

Theorem: A language is recognized by a DFA if and only if it is generated by some regular ex-
pression. In the proof, the construction of DFA from a regular expression follows the closure proofs
and recursive definition of the regular expression. The construction of a regular expression from a
DFA first converts DFA into a Generalized NFA with regular expressions on the transitions, a sin-
gle distinct accept state and transitions (possibly () between every two states. The proof proceeds
inductively eliminating states until only the start and accept states are left.

Lemma The pumping lemma for reqular languages states that for every regular language A there
is a pumping length p such that Vs € A, if |s| > p then s = xyz such that 1) Vi > 0,zy’z € A. 2)
ly| > 0 3) |zy| < p. The proof proceeds by setting p to be the number of states of a DFA recognizing
A, and showing how to eliminate or add the loops. This lemma is used to show that languages such
as {0™"1"}, {ww"} and so on are not regular.

Context-free languages and Pushdown automata.

e A pushdown automaton (PDA) is a “NFA with a stack”; more formally, a PDA is a 6-tuple (@, 3,T', d, qo, F')
where @) is the set of states, ¥ the input alphabet, I" the stack alphabet, gg the start state, F' is the
set of finite states and the transition function ¢ : @ x (X U {e}) x (U {e}) — P(Q x (' U {e})).

e A context-free grammar (CFG) is a 4-tuple (V, X, R, S), where V is a finite set of variables, with
S € V the start variable, ¥ is a finite set of terminals (disjoint from the set of variables), and R is
a finite set of rules, with each rule consisting of a variable followed by — > followed by a string of
variables and terminals.

e . Let A — w be a rule of the grammar, where w is a string of variables and terminals. Then A can
be replaced in another rule by w: uAv in a body of another rule can be replaced by uwv (we say
uAv yields vwv,denoted uAv = uwwv). If there is a sequence u = uy, ug, ... ur = v such that for all i,
1 <i <k, u; = uiy1 then we say that u derives v (denoted v = v.) If G is a context-free grammar,
then the language of G is the set of all strings of terminals that can be generated from the start
variable: £(G) = {w € *|S = w}. A parse tree of a string is a tree representation of a sequence of
derivations; it is leftmost if at every step the first variable from the left was substituted. A grammar
is called ambiguous if there is a string in a grammar with two different (leftmost) parse trees.

e A language is called a contezt-free language (CFL) if there exists a CFG generating it.
e Theorem Every regular language is context-free.

e Theorem A language is context-free iff some pushdown automaton recognizes it. The proof of one
direction constructs a PDA from the grammar (by having a middle state with “loops” on rules;
loops consist of as many states as needed to place all symbols in the rule on the stack). The proof
for another direction constructs a grammar that for every pair of states has a variable and a rule
generating strings for a sequence of steps between these states keeping stack content.

e Lemma The pumping lemma for context-free languages states that for every CFL A there is a
pumping length p such that Vs € A, if |s| > p then s = uvryz such that 1) Vi > 0,uv'xy’z € A.
2) |vy| > 0 3) |vzy| < p. The proof proceeds by analyzing repeated variables in large parse trees,
setting the pumping length to d!VI*! where d is the length (number of symbols) of the longest rule.
This lemma is used to show that languages such as {a"b"c"}, {ww} and so on are not regular.

e Theorem The class of CFLs is not closed under complementation and intersection (although it is
closed under union, Kleene star and concatenation).

e Theorem There are context-free languages not recognized by any deterministic PDA. (No proof
given in class).

Turing machines and decidability.

e A Turing machine is a finite automaton with an infinite memory (tape). Formally, a Turing machine
is a 6-tuple M = (Q, 2,1, 9, 0, Qaccepts Greject)- Here, @ is a finite set of states as before, with three
special states qo (start state), qaccept and greject. The last two are called the halting states, and they
cannot be equal. ¥ a finite input alphabet. I' is a tape alphabet which includes all symbols from X
and a special symbol for blank, L. Finally, the transition function is 6 : @ x I' — @ x I' x {L, R}
where L, R mean move left or right one step on the tape.

e Equivalent (not necessarily efficiently) variants of Turing machines:two-way vs. one-way infinite tape,
multi-tape, non-deterministic, FIFO (queue) automaton.

Church-Turing Thesis Anything computable by an algorithm of any kind (our intuitive notion of
algorithm) is computable by a Turing machine.

A Turing machine M accepts a string w if there is a sequence of configurations (state,non-blank
memory,head position) starting from gow and ending in a configuration containing ggecept, With every
configuration in the sequence resulting from a previous one by a transition in § of M. A Turing
machine M recognizes a language L if it accepts all and only strings in L: that is, Vx € ¥*, M
accepts x iff x € L. As before, we write L(M) for the language accepted by M.

A language L is called Turing-recognizable (also recursively enumerable, r.e, or semi-decidable) if 3 a
Turing machine M such that £(M) = L. A language L is called decidable (or recursive) if 3 a Turing
machine M such that £(M) = L, and additionally, M halts on all inputs x € ¥*. That is, on every
string M either enters the state guccept OF @reject in some point in computation. A language is called co-
semi-decidable if its complement is semi-decidable. Semi-decidable languages can be described using
unbounded 3 quantifier over a decidable relation; co-semi-decidable using unbounded V quantifier.
There are languages that are higher in the arithmetic hierarchy than semi- and co-semi-decidable;
they are described using mixture of 3 and V quantifiers and then number of alternation of quantifiers
is the level in the hierarchy.

Decidable languages are closed under intersection, union, complementation, Kleene star, etc. Semi-
decidable languages are not closed under complementation, but closed under intersection and union.

If a language is both semi-decidable and co-semi-decidable, then it is decidable.
Encoding languages and Turing machines as binary strings.
Undecidability; proof by diagonalization. Arjs is undecidable.

A many-one reduction: A <,,, B if exists a computable function f such that Vz € ¥%, 2 €¢ A +—
f(z) € B. To prove that B is undecidable, (not semi-decidable, not co-semi-decidable) pick A which
is undecidable (not semi, not co-semi.) and reduce A to B.

Know how to do reductions and place languages in the corresponding classes, similar to the assign-
ment.

Examples of undecidable languages; know that {(M) | LM is regular} is already undecidable.
Complexity theory, NP-completeness

A Turing machine M runs in time ¢(n) if for any input of length n the number of steps of M is at
most t(n).

A language L is in the complexity class P (stands for Polynomial time) if there exists a Turing
machine M, LM = L and M runs in time O(n¢) for some fixed constant c. The class P is believed
to capture the notion of efficient algorithms.

A language L is in the class NP if there exists a polynomial-time verifier, that is, a relation R(x,y)
computable in polynomial time such that Yo,z € L <= Jy, |y| < c|lz|* A R(z,y). Here, c and d are
fixed constants, specific for the language.

A different, equivalent, definition of NP is a class of languages accepted by polynomial-time non-
deterministic Turing machines. The name NP stands for “Non-deterministic Polynomial-time”.

P C NP C EXP, where EXP is the class of languages computable in time exponential in the length of
the input.

Examples of languages in P: all regular and context-free languages, connected graphs, relatively prime
pairs of numbers (and, quite recently, prime numbers), etc.

Examples of languages in NP: all languages in P, Clique, Hamiltonian Path, SAT, etc. Technically,
functions computing an output other than yes/no are not in NP since they are not languages.

Major Open Problem: is P = NP? Widely believed that not, weird consequences if they were, including
breaking all modern cryptography and automating creativity.

If P = NP, then can compute witness y in polynomial time.

Polynomial-time reducibility: A <, B if there exists a polynomial-time computable function f such
that Ve € ¥,0 € A <= f(z) € B.

A language L is N-hard if every language in NP reduces to L. A language is NP-complete it is both in
NP and NP-hard.

Cook-Levin Theorem states that SAT is NP-complete. The rest of NP-completeness proofs we saw
are by reducing SAT (3SAT) to the other problems (also mentioned a direct proof for CircuitSAT in
the notes).

Examples of NP-complete problems with the reduction chain:

— SAT <, 3SAT
3SAT <, IndSet <, Clique, IndSet <, VectorCover
— Hampath <, HamCycle <, TSP (skipped 3SAT <, HamPath; see the book.)

— 35AT <, SubsetSum <, Partition <, Knapsack. Reduction relies on numbers in binary;
unary case solvable by dynamic programming in polynomial time.

Search-to-decision reductions: given an “oracle” with yes/no answers to the language membership
(decision) problem in NP, can compute the solution in polynomial time with polynomially many
yes/no queries. Similar idea to computing a witness if P = NP.

Self-replication and recursion theorem

A Turing machine (or any general computational model) is capable of writing its own description as
an output.

Proof idea: There is a function ¢, ¢(w) = (P,,) where L(P,) = {w}. Now, make the string say:
Print the following sentence, second time in quotes
‘‘Print the following sentence, second time in quotes’’

Recursion theorem: let TM T compute function t. Then there exists a TM R that on input w
computes t((R),w). That is, R does on a string what ¢ would do on a pair a description of a TM
and a string.

