Midterm study sheet for CS3719

Regular languages and finite automata:

- An alphabet is a finite set of symbols. Set of all finite strings over an alphabet Σ is denoted Σ^* . A language is a subset of Σ^* . Empty string is called ϵ (epsilon).
- Regular expressions are built recursively starting from \emptyset , ϵ and symbols from Σ and closing under Union $(R_1 \cup R_2)$, Concatenation $(R_1 \circ R_2)$ and Kleene Star $(R^* \text{ denoting } 0 \text{ or more repetitions of } R)$ operations. These three operations are called regular operations.
- A Deterministic Finite Automaton (DFA) D is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where Q is a finite set of states, Σ is the alphabet, $\delta : Q \times \Sigma \to Q$ is the transition function, q_0 is the start state, and F is the set of accept states. A DFA accepts a string if there exists a sequence of states starting with $r_0 = q_0$ and ending with $r_n \in F$ such that $\forall i, 0 \leq i < n, \delta(r_i, w_i) = r_{i+1}$. The language of a DFA, denoted $\mathcal{L}(D)$ is the set of all and only strings that D accepts.
- Deterministic finite automata are used in string matching algorithms such as Knuth-Morris-Pratt algorithm.
- A language is called *regular* if it is recognized by some DFA.
- **'Theorem:** The class of regular languages is closed under union, concatenation and Kleene star operations.
- A non-deterministic finite automaton (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where Q, Σ, q_0 and F are as in the case of DFA, but the transition function δ is $\delta : Q \times (\Sigma \cup \{\epsilon\}) \to \mathcal{P}(Q)$. Here, $\mathcal{P}(Q)$ is the powerset (set of all subsets) of Q. A non-deterministic finite automaton accepts a string $w = w_1 \dots w_m$ if there exists a sequence of states $r_0, \dots r_m$ such that $r_0 = q_0, r_m \in F$ and $\forall i, 0 \leq i < m, r_{i+1} \in \delta(r_i, w_i)$.
- **Theorem:** For every NFA there is a DFA recognizing the same language. The construction sets states of the DFA to be the powerset of states of NFA, and makes a (single) transition from every set of states to a set of states accessible from it in one step on a letter following with all states reachable by (a path of) ϵ -transitions. The start state of the DFA is the set of all states reachable from q_0 by following possibly multiple ϵ -transitions.
- Theorem: A language is recognized by a DFA if and only if it is generated by some regular expression. In the proof, the construction of DFA from a regular expression follows the closure proofs and recursive definition of the regular expression. The construction of a regular expression from a DFA first converts DFA into a Generalized NFA with regular expressions on the transitions, a single distinct accept state and transitions (possibly ∅) between every two states. The proof proceeds inductively eliminating states until only the start and accept states are left.
- Lemma The pumping lemma for regular languages states that for every regular language A there is a pumping length p such that $\forall s \in A$, if |s| > p then s = xyz such that 1) $\forall i \ge 0, xy^i z \in A$. 2) |y| > 0 3) |xy| < p. The proof proceeds by setting p to be the number of states of a DFA recognizing A, and showing how to eliminate or add the loops. This lemma is used to show that languages such as $\{0^n 1^n\}, \{ww^r\}$ and so on are not regular.

Context-free languages and Pushdown automata.

- A pushdown automaton (PDA) is a "NFA with a stack"; more formally, a PDA is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where Q is the set of states, Σ the input alphabet, Γ the stack alphabet, q_0 the start state, F is the set of finite states and the transition function $\delta : Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \rightarrow \mathcal{P}(Q \times (\Gamma \cup \{\epsilon\}))$.
- A context-free grammar (CFG) is a 4-tuple (V, Σ, R, S) , where V is a finite set of variables, with $S \in V$ the start variable, Σ is a finite set of terminals (disjoint from the set of variables), and R is a finite set of rules, with each rule consisting of a variable followed by > followed by a string of variables and terminals.
- Let A → w be a rule of the grammar, where w is a string of variables and terminals. Then A can be replaced in another rule by w: uAv in a body of another rule can be replaced by uwv (we say uAv yields uwv, denoted uAv ⇒ uwv). If there is a sequence u = u₁, u₂, ... u_k = v such that for all i, 1 ≤ i < k, u_i ⇒ u_{i+1} then we say that u derives v (denoted v ⇒ v.) If G is a context-free grammar, then the language of G is the set of all strings of terminals that can be generated from the start variable: L(G) = {w ∈ Σ*|S ⇒ w}. A parse tree of a string is a tree representation of a sequence of derivations; it is leftmost if at every step the first variable from the left was substituted. A grammar is called ambiguous if there is a string in a grammar with two different (leftmost) parse trees.
- A language is called a *context-free language* (CFL) if there exists a CFG generating it.
- Theorem Every regular language is context-free.
- **Theorem** A language is context-free iff some pushdown automaton recognizes it. The proof of one direction constructs a PDA from the grammar (by having a middle state with "loops" on rules; loops consist of as many states as needed to place all symbols in the rule on the stack). The proof for another direction constructs a grammar that for every pair of states has a variable and a rule generating strings for a sequence of steps between these states keeping stack content.
- Lemma The pumping lemma for context-free languages states that for every CFL A there is a pumping length p such that ∀s ∈ A, if |s| > p then s = uvxyz such that 1) ∀i ≥ 0, uvⁱxyⁱz ∈ A.
 2) |vy| > 0 3) |vxy| < p. The proof proceeds by analyzing repeated variables in large parse trees, setting the pumping length to d^{|V|+1} where d is the length (number of symbols) of the longest rule. This lemma is used to show that languages such as {aⁿbⁿcⁿ}, {ww} and so on are not regular.
- **Theorem** The class of CFLs is *not* closed under complementation and intersection (although it is closed under union, Kleene star and concatenation).
- **Theorem** There are context-free languages not recognized by any deterministic PDA. (No proof given in class).

Turing machines and decidability.

- A Turing machine is a finite automaton with an infinite memory (tape). Formally, a Turing machine is a 6-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$. Here, Q is a finite set of states as before, with three special states q_0 (start state), q_{accept} and q_{reject} . The last two are called the halting states, and they cannot be equal. Σ a finite input alphabet. Γ is a tape alphabet which includes all symbols from Σ and a special symbol for blank, \sqcup . Finally, the transition function is $\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ where L, R mean move left or right one step on the tape.
- Equivalent (not necessarily efficiently) variants of Turing machines:two-way vs. one-way infinite tape, multi-tape, non-deterministic, FIFO (queue) automaton.

- *Church-Turing Thesis* Anything computable by an algorithm of any kind (our intuitive notion of algorithm) is computable by a Turing machine.
- A Turing machine M accepts a string w if there is a sequence of configurations (state,non-blank memory,head position) starting from q_0w and ending in a configuration containing q_{accept} , with every configuration in the sequence resulting from a previous one by a transition in δ of M. A Turing machine M recognizes a language L if it accepts all and only strings in L: that is, $\forall x \in \Sigma^*$, M accepts x iff $x \in L$. As before, we write $\mathcal{L}(M)$ for the language accepted by M.
- A language L is called Turing-recognizable (also recursively enumerable, r.e, or semi-decidable) if ∃ a Turing machine M such that L(M) = L. A language L is called decidable (or recursive) if ∃ a Turing machine M such that L(M) = L, and additionally, M halts on all inputs x ∈ Σ*. That is, on every string M either enters the state q_{accept} or q_{reject} in some point in computation. A language is called *co-semi-decidable* if its complement is semi-decidable. Semi-decidable languages can be described using unbounded ∃ quantifier over a decidable relation; co-semi-decidable using unbounded ∀ quantifier. There are languages that are higher in the arithmetic hierarchy than semi- and co-semi-decidable; they are described using mixture of ∃ and ∀ quantifiers and then number of alternation of quantifiers is the level in the hierarchy.
- Decidable languages are closed under intersection, union, complementation, Kleene star, etc. Semidecidable languages are not closed under complementation, but closed under intersection and union.
- If a language is both semi-decidable and co-semi-decidable, then it is decidable.
- Encoding languages and Turing machines as binary strings.
- Undecidability; proof by diagonalization. A_{TM} is undecidable.
- A many-one reduction: $A \leq_m B$ if exists a computable function f such that $\forall x \in \Sigma_A^*$, $x \in A \iff f(x) \in B$. To prove that B is undecidable, (not semi-decidable, not co-semi-decidable) pick A which is undecidable (not semi, not co-semi.) and reduce A to B.
- Know how to do reductions and place languages in the corresponding classes, similar to the assignment.
- Examples of undecidable languages; know that $\{\langle M \rangle \mid \mathcal{L}M \text{ is regular}\}$ is already undecidable.

Complexity theory, NP-completeness

- A Turing machine M runs in time t(n) if for any input of length n the number of steps of M is at most t(n).
- A language L is in the complexity class P (stands for *Polynomial time*) if there exists a Turing machine M, $\mathcal{L}M = L$ and M runs in time $O(n^c)$ for some fixed constant c. The class P is believed to capture the notion of efficient algorithms.
- A language L is in the class NP if there exists a *polynomial-time verifier*, that is, a relation R(x, y) computable in polynomial time such that $\forall x, x \in L \iff \exists y, |y| \leq c|x|^d \wedge R(x, y)$. Here, c and d are fixed constants, specific for the language.
- A different, equivalent, definition of NP is a class of languages accepted by polynomial-time *nondeterministic* Turing machines. The name NP stands for "Non-deterministic Polynomial-time".
- $P \subseteq NP \subseteq EXP$, where EXP is the class of languages computable in time exponential in the length of the input.

- Examples of languages in P: all regular and context-free languages, connected graphs, relatively prime pairs of numbers (and, quite recently, prime numbers), etc.
- Examples of languages in NP: all languages in P, Clique, Hamiltonian Path, SAT, etc. Technically, functions computing an output other than yes/no are not in NP since they are not languages.
- Major Open Problem: is P = NP? Widely believed that not, weird consequences if they were, including breaking all modern cryptography and automating creativity.
- If P = NP, then can compute witness y in polynomial time.
- Polynomial-time reducibility: $A \leq_p B$ if there exists a polynomial-time computable function f such that $\forall x \in \Sigma, x \in A \iff f(x) \in B$.
- A language L is N-hard if every language in NP reduces to L. A language is NP-complete it is both in NP and NP-hard.
- Cook-Levin Theorem states that *SAT* is NP-complete. The rest of NP-completeness proofs we saw are by reducing SAT (3SAT) to the other problems (also mentioned a direct proof for CircuitSAT in the notes).
- Examples of NP-complete problems with the reduction chain:
 - $-SAT \leq_p 3SAT$
 - $-3SAT \leq_p IndSet \leq_p Clique, IndSet \leq_p VectorCover$
 - $Hampath \leq_p HamCycle \leq_p TSP$ (skipped $3SAT \leq_p HamPath$; see the book.)
 - $-3SAT \leq_p SubsetSum \leq_p Partition \leq_p Knapsack$. Reduction relies on numbers in binary; unary case solvable by dynamic programming in polynomial time.
- Search-to-decision reductions: given an "oracle" with yes/no answers to the language membership (decision) problem in NP, can compute the solution in polynomial time with polynomially many yes/no queries. Similar idea to computing a witness if P = NP.

Self-replication and recursion theorem

- A Turing machine (or any general computational model) is capable of writing its own description as an output.
- Proof idea: There is a function q, $q(w) = \langle P_w \rangle$ where $\mathcal{L}(P_w) = \{w\}$. Now, make the string say: Print the following sentence, second time in quotes 'Print the following sentence, second time in quotes''
- Recursion theorem: let TM T compute function t. Then there exists a TM R that on input w computes $t(\langle R \rangle, w)$. That is, R does on a string what t would do on a pair a description of a TM and a string.