
CS 3719 (Theory of Computation and Algorithms) –
Lecture 7

Antonina Kolokolova∗

January 20, 2011

Example 1. Here is an example of converting a 3-state NFA into a DFA, following the
procedure from the last class. The alphabet is Σ = {0, 1}. The states of the DFA are
Q = {∅, {q0}, {q1}, {q2}, {q0, q1}, {q0, q2}, {q1, q2}, {q0, q1, q2}}. Out of them, all except ∅ and
{q1} are accepting states. The starting state is {q0, q2}.
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1 From automata to regular expressions

In this lecture, we will show the other direction of a theorem that the class of languages
recognized by automata is the same as the class generated by regular expressions. Moreover,
our proof will be constructive: given an automaton, we will show how to convert it into an
equivalent regular expression.

Theorem 5. For every NFA N there is a regular expression R generating L(N).

Before we start the proof, let us play with the definition of an automaton a little more.
It would be very convenient for the proof if the transitions in the automaton were regular

∗The material in this set of notes came from many sources, in particular “Introduction to Theory of
Computation” by Sipser and course notes of U. of Toronto CS 364.
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expressions: after all, a symbol is a regular expression, so is ε, a ”0,1” is just (0 ∪ 1) and no
arrow is like an ∅ expression. Also, let’s have a unique accepting state and make it and the
start state special: there will be no incoming arrows into the start state and no outgoing
arrows to the accept state. We will call such automata Generalized Nondeterministic Finite
Automata (GNFA).

Definition 6. A Generalized Nondeterministic Finite Automata (GNFA) N = (Q, Σ, δ, qstart, qaccept)
is a 5-tuple where Q is the set of states, Σ an alphabet, qstart a start state, qaccept a (unique)
accept state and δ : (Q−{qaccept})× (Q−{qstart}) → R a transition function, where R is the
set of all regular expressions over Σ. A GNFA accepts a string w if there is a way to break w
into w1 . . . wm′ (some possibly empty) in Σ∗, where there exists a sequence of states r0, . . . , rm′

starting with qstart and ending with qaccept such that ∀i, 0 ≤ i < m′, wi ∈ L(δ(ri, ri+1)).

Note that here the transition function, rather than outputting a state, outputs a label of the
transition. The reason for defining it this way is that there is just one transition (possibly
labeled ∅) for every 2 states for the total of n2 + 2n transitions in a GNFA with n internal
states; however there are infinitely many possible regular expressions. In our definition, δ
can still be described by a finite table.

Lemma 6. Any DFA can be converted into a GNFA.

Proof. To convert a DFA D = (Q, Σ, δ, q0, F ) into a GNFA N = (Q′, Σ, δ′, qstart, qaccept,
add two states qaccept and qstart to Q (getting Q′). The new transition function δ′ will
consist of transitions in δ in the new format together with transitions for the two new states.

δ′(qi, qj) =


⋃

k{ak}, {ak ∈ Σ ∪ {ε}|δ(qi, ak) = qj}
ε, (qi = qstart and qj = q0) or (qi ∈ F and qj = qaccept)

∅, otherwise

The notation
⋃

k Sk means a union of sets Sk; here,
⋃

k{ak} just means a set of all symbols of
Σ on which there is a transition from qi to qj in D. If there are no such symbols,

⋃
k{ak} = ∅.

Now, N is a GNFA, and L(N) = L(D). To check the latter statement, notice that N starts
reading its input in the state q0 since there are no transitions other than ε to q0 from qstart,
and that whenever the computation ends in one of the states in F , it has an ε-transition to
qaccept.Since the two new states do not participate in the computation otherwise, for every
computational path in D there is the same computational path in N preceded with qstart

and followed by qaccept and vice versa.

Example 2. Here a simple 2-state DFA accepting strings with odd number of 1s is converted
into a corresponding GNFA.
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Proof of theorem 5. Now we will show how, given a GNFA N = (Q, Σ, δ, qstart, qaccept), to
compute a corresponding regular expression. The proof is by induction on the number of
states in N .

For the base case, there are only two states in N , and they are qstart and qaccept. There is just
one transition in this NFA, δ(qstart, qaccept) = R. Then, L(N) = L(R). In the acceptance
condition of the GNFA, m′ = 1, r0 = qstart, r1 = qaccept and w ∈ L(R).

Now suppose that we know how to obtain a regular expression from a GNFA with k ≥ 2
states. We will show how to convert a GNFA N = (Q, Σ, δ, qa, qs) on k +1 states to a GNFA
N = (Q′, Σ, δ′, qa, qs) on k states accepting the same language. Here, qs and qa are just a
short notation for qstart and qaccept.

Pick an arbitrary state in Q−{qs, qa}; call it qr (“qrip” in Sipser’s book). Set Q′ = Q−{qr}.
Now, let qi and qj be two other states in Q (recall that there are at least 3 states in Q).
Since we are removing the state qr we need to adjust δ to take into account all computation
paths that were going via qr.

Look at two ways to get from qi to qj: via qr or direct. The path via qr consists of 3
steps: δ(qi, qr) = R1, then a possible loop on qr, δ(qr, qr) = R2, and then qr to qj step on
δ(qr, qj) = R3. A direct path from qi to qj is δ(qi, qj) = R4. Now, note that a path via qr

is a concatenation of the three steps with 0 or more repetitions of the loop; thus, a regular
expression R1R

∗
2R3 encodes it. Finally, since there are two possible paths from qi to qj, via

qr or direct, we take the union of them. The label on the qi, qj arrow in the GNFA without
qr thus becomes δ′(qi, qj) = R1R

∗
2R3 ∪R4. You can check yourself that for any substring wm

on which N went from qi to qj either direct or via qr, N ′ will also go from qi to qj, directly
this time.

Therefore, by induction hypothesis, we can extract a regular expression from N ′, since
L(N ′) = L(N) and N ′ contains only k states.

In other words, to convert a GNFA to a regular expression repeat the procedue of removing
a state and adjusting δ k − 2 times. Then, return δ(qa, qs) of the resulting 2-state GNFA.

Now, starting from a finite automaton (assiming, without loss of generality, that it is a
DFA) construct a GNFA and then obtain a regular expression by doing the removing-states
procedure until only 2 states are left.

Example 3. Here are the two steps of obtaining a regular expression from the GNFA in the
previous example. Noting that εR = R, ∅ ∪R = R and R∅ = ∅, obtain R = 0∗1(10∗1 ∪ 0)∗
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