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Example 1. Here is an example of converting a 3-state NFA into a DFA, following the
procedure from the last class. The alphabet is ¥ = {0,1}. The states of the DFA are

Q = {@7 {%}; {QI}7 {qQ}7 {QO7 QI}a {QO7 QQ}a {Qb q?}a {QO7 qi, qQ}} Out of theIn7 all except @ and
{q1} are accepting states. The starting state is {qo, g2}
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1 From automata to regular expressions

In this lecture, we will show the other direction of a theorem that the class of languages
recognized by automata is the same as the class generated by regular expressions. Moreover,
our proof will be constructive: given an automaton, we will show how to convert it into an
equivalent regular expression.

Theorem 5. For every NFA N there is a reqular expression R generating L(N).

Before we start the proof, let us play with the definition of an automaton a little more.
It would be very convenient for the proof if the transitions in the automaton were regular

*The material in this set of notes came from many sources, in particular “Introduction to Theory of
Computation” by Sipser and course notes of U. of Toronto CS 364.



expressions: after all, a symbol is a regular expression, so is €, a 70,17 is just (0 U 1) and no
arrow is like an () expression. Also, let’s have a unique accepting state and make it and the
start state special: there will be no incoming arrows into the start state and no outgoing
arrows to the accept state. We will call such automata Generalized Nondeterministic Finite
Automata (GNFA).

Definition 6. A Generalized Nondeterministic Finite Automata (GNFA) N = (Q, X, 0, Gstarts Gaccept)
is a 5-tuple where Q) is the set of states, ¥ an alphabet, qsiare a start state, qaecept @ (unique)

accept state and 6 : (Q — {qaccept }) X (Q —{qstart}) — R a transition function, where R is the

set of all reqular expressions over .. A GNFA accepts a string w if there is a way to break w

into wy ... Wyy (some possibly empty) in 3*, where there exists a sequence of states o, ..., Ty
starting with qsiare and ending with Quecept Such that Vi, 0 < i <m/;w; € L(6(ri,Ti41))-

Note that here the transition function, rather than outputting a state, outputs a label of the
transition. The reason for defining it this way is that there is just one transition (possibly
labeled () for every 2 states for the total of n? + 2n transitions in a GNFA with n internal
states; however there are infinitely many possible regular expressions. In our definition, &
can still be described by a finite table.

Lemma 6. Any DFA can be converted into a GNFA.

Proof. To convert a DFA D = (Q,%,9,q, F) into a GNFA N = (Q', %, ¢starts Gaccept
add two states guecept a0d ggare to @ (getting ). The new transition function ¢’ will
consist of transitions in § in the new format together with transitions for the two new states.

Ur{an}, {an € ZU{e}|d(q ar) = ¢;}
5,(%7 QJ) =156 (QZ = {start and q; = q0) or (QI € F and q; = Qaccept>
0, otherwise

The notation | J, S, means a union of sets Si; here, J, {ax} just means a set of all symbols of
¥ on which there is a transition from ¢; to ¢; in D. If there are no such symbols, |J, {axr} = 0.

Now, N is a GNFA, and L(N) = L(D). To check the latter statement, notice that N starts
reading its input in the state ¢q since there are no transitions other than € to ¢y from gsqre,
and that whenever the computation ends in one of the states in F', it has an e-transition to
Qaccept-Oince the two new states do not participate in the computation otherwise, for every
computational path in D there is the same computational path in N preceded with gsqre
and followed by ggccepr and vice versa. O

Example 2. Here a simple 2-state DFA accepting strings with odd number of 1s is converted
into a corresponding GNFA.
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Proof of theorem 5. Now we will show how, given a GNFA N = (Q, X, 0, ¢start; Gaccept), tO
compute a corresponding regular expression. The proof is by induction on the number of
states in V.

For the base case, there are only two states in IV, and they are ggqr¢ and ggecepe. There is just
one transition in this NFA, 0(qstart; Gaccept) = R. Then, L(N) = L(R). In the acceptance
condition of the GNFA, m' =1, 70 = Gstart; "1 = Qaceept a0d w € L(R).

Now suppose that we know how to obtain a regular expression from a GNFA with &k > 2
states. We will show how to convert a GNFA N = (Q, %, 6, ¢4, qs) on k+ 1 states to a GNFA
N = (Q',%,¢,q4,q9s) on k states accepting the same language. Here, ¢s and ¢, are just a
short notation for gsiert and uccept-

Pick an arbitrary state in @ —{gs, ¢. }; call it g, (“g.;»” in Sipser’s book). Set Q' = Q —{g,}.
Now, let ¢; and ¢; be two other states in ) (recall that there are at least 3 states in Q).
Since we are removing the state ¢. we need to adjust § to take into account all computation
paths that were going via g,.

Look at two ways to get from ¢; to g;: via g, or direct. The path via ¢, consists of 3
steps: 0(¢;,q-) = R, then a possible loop on ¢, §(¢r,¢.) = Rs, and then ¢, to ¢; step on
9(gr,q;) = Rs. A direct path from ¢; to g; is 6(¢i, ¢;) = R4. Now, note that a path via ¢,
is a concatenation of the three steps with 0 or more repetitions of the loop; thus, a regular
expression Ry R;5R3 encodes it. Finally, since there are two possible paths from ¢; to ¢;, via
¢ or direct, we take the union of them. The label on the ¢;, ¢; arrow in the GNFA without
¢, thus becomes 0'(g;, ¢;) = R1R5R3 U Ry. You can check yourself that for any substring w,,
on which NV went from ¢; to g; either direct or via ¢., N will also go from ¢; to g;, directly
this time.

Therefore, by induction hypothesis, we can extract a regular expression from N’, since
L(N') = L(N) and N’ contains only k states.

In other words, to convert a GNFA to a regular expression repeat the procedue of removing
a state and adjusting § k — 2 times. Then, return 6(q,, ¢s) of the resulting 2-state GNFA.

Now, starting from a finite automaton (assiming, without loss of generality, that it is a
DFA) construct a GNFA and then obtain a regular expression by doing the removing-states
procedure until only 2 states are left. O]

Example 3. Here are the two steps of obtaining a regular expression from the GNFA in the

previous example. Noting that eR = R, DU R = R and R} = (), obtain R = 0*1(10*1 U 0)*

10¥1 U0

10%0 Ut

€0*1
. . €0*1 (10¥1 U 0)*(10*@ UE) U @
pt)




