
CS 3719 (Theory of Computation and Algorithms) –
Lecture 6

Antonina Kolokolova∗

January 18, 2011

1 Closure under concatenation and star operations

Last time, we showed that the class of regular languages is closed under the Union operation
(lemma 2.) Now we will finish the proof of Theorem 1 by stating how to show the closure of
the class of regular languages under concatenation and star operations.

Continuation of the proof of Theorem 1. Recall that a language A is a concatenation of lan-
guages A1 and A2 if every string in A is of the form w = {xy|x ∈ A1 ∧ y ∈ A2}. Let
N1 = (Q1, Σ1, δ1, q1, F1) and N2 = (Q2, Σ2, δ2, q2.F2) be NFAs accepting A1 and A2, respec-
tively, Then define an NFA N accepting A as follows: Q = Q1 ∪ Q2, Σ = Σ1 ∪ Σ2, q0 = q1,
F = F2 and δ consists of δ1, δ2 and ε-transitions between states from F1 and q2. So N ′

non-deterministically decides that a string from A1 has ended and a string from A2 started.

Example 1. Here are two NFAs N1 and N2 and their concatenation:

N

0
0,1

q1

1

q3 q4

1

q2 q5

0,1

0
0,1

q1

1

q3 q4

1

q2 q5

0,1

ε

ε

N1 N2

∗The material in this set of notes came from many sources, in particular “Introduction to Theory of
Computation” by Sipser and course notes of U. of Toronto CS 364.

1



Now, let’s consider the case of the Star operation. Let N be an NFA, L(N) = A. A natural
approach to build N ′ with L(N ′) = A∗ could be to just add an ε-arrow from every final
state N to its start state. This almost works, except for the case of the empty string as an
input, which is in A∗ by definition. To avoid this problem, after adding ε-arrows from the
final states of N to its start state, add one more accepting state and make it the start state
with ε-arrow from it to the original start. That is, Q′ = Q∪{qnewstart}, F ′ = F ∪{qnewstart},
q′
0 = qnewstart and δ contains extra transitions from qnewstart to q0 of N and from each state

in F to q0.

Example 2. Here is an NFA for A2 from the previous example and an NFA for A∗
2

q1q0

1

q_n

1

ε

0,1

N N’

ε

0,1

q1 q0

2 Equivalence of NFAs and DFAs

When we defined regular languages, we said that a language is regular if it is accepted by
some finite automaton, without really specifying whether it is a DFA or an NFA. It is clear
that if a language can be recognized by some DFA can also be recognized an NFA, at least
because DFAs are a special case of NFAs. But what about the other direction, are there
languages that can be done by NFAs but not DFAs? In general, does non-determinism make
the model of computation more powerful?

In this section we will show how to simulate NFAs by DFAs, althought the simulation is not
very efficient. To the most general question, about the power of non-determinism, there is no
single answer: sometimes non-determinism does not help much (as for the finite automata or
Turing machines), sometimes it allows the model to recognize languages it would not be able
to recognize without (that will be the case for pushdown automata, which we will talk about
next week) and sometimes the answer is not known: a major, literally million-dollar, problem
P vs. NP asks whether non-deterministic Turing machines can be simulated efficiently by
deterministic ones. We will talk about this problem at length at the last part of the course.

Theorem 3. For every NFA N there is a DFA D such that L(N) = L(D).

Corollary 4. The class of languages accepted by NFAs is the same as the class of languages
accepted by NFAs (regular languages.)

2



Proof. The idea of the construction is as follows. Think of tracking an execution of N on
a string. On every step of the NFA, maintain a set of states in which N could be at the
moment. Then, on a next symbol, see where it is possible to get from any of the current
states on that symbol. If there are ε-transitions, then every time after computing the states
reachable from the current also add to the set any states reachable from the computed ones
on ε-arrows.

Example 3. Here is an example of an NFA and a corresponding DFA. Consider an execution
of this NFA on a string 1101. The first state is q0, after that, on seeing a 1, it can go to
either q0 or q1; record it as being in a state {q0, q1}. After seeing another 1, it can again go
to either q0 or q1 already from q0, so both states are possible. From there it will go back to
q0 on a 0 since there are no transitions from q1 on 0, and from q0 on 0 N stays in q0. And,
finally, it will go again to {q0, q1} on 1. Since this means it is possible to end in an accepting
state q1, we treat {q0, q1} as an accepting state.

DFA

O

q0

1

0,1

q1

NFA

q0 q1

q1

q0

0

0,1

0,1

0

1

1

/

To formalize this intuition, let’s describe D(Q′, Σ, δ′, q0, F}. We will have to talk about sets
of states reachable from a given set by following ε-arrows: let’s call, for a set of states Qi, a
E(Qi) = {q ∈ Q|∃q′ ∈ Q such that q is reachable from q′ by following ε-arrows}.

• Set Q′ = P(Q), that is, a set of all subsets of Q. Thus, this conversion is not very
efficient: the new DFA is exponentially larger than the original NFA.

• The new start state will be all states accessible from q0 by following ε-arrows. That is,
q′
0 = E({q0}).

• The final states of D are all sets that contain at least one final state of N . That is,
F ′ = {Qi|∃q ∈ F, q ∈ Qi}.

• Finally, we need to define the transition function of D, δ′(Qi, a). It should be a set of
states reachable from states in Qi by doing δ-transitions on a, together with everything
else that can be reached from them by ε-arrows. More formally, δ′(Qi, a) = {q|q ∈
E(δ(q′, a)) for some q′ ∈ Qi}.

3



Example 4. Here is an example of an NFA with ε-transitions and a corresponding DFA.
Note that the start state is now {q0, q1}, since q1 is reachable from q0 by an ε-transition.
Also, q1 is reachable from q1 two different ways: by the self-loop, and by going to q0 and
back on ε-arrow.

0,1

O

q0

ε

q1

NFA

q0 q1

q1

q0

0,1

1

DFA

0,1

1

0

1

0

/

Note that in these two examples there are groups of states that are not reachable from
the start. If this is the case, then we often just draw the part of the automaton which is
reachable, ignoring the states we never get to.

4


