
CS 3719 (Theory of Computation and Algorithms) –
Lecture 4

Antonina Kolokolova∗

January 13, 2011

1 Regular Languages

Recall that a language is recognized by a finite automaton if each string in the language and
no string not in the language are accepted by this automaton. There can be several different
automata accepting the same language.

Definition 3. A language is called regular if there exists a finite automaton that accepts it.
We will use the notation L(N) to mean the language accepted by the automaton N .

We will show soon that this is the same “regular” as in “regular expressions”. In particular,
the operations used to build regular expressions inductively out of smaller ones are called
regular operations:

Definition 4. Let A, B be languages. We define three regular operations on them:

• Union A ∪B = {x|x ∈ A or x ∈ B}

• Concatenations A ◦B = {xy|x ∈ A and y ∈ B}

• Star A∗ = {x1 . . . xk|k ≥ 0 and ∀1 ≤ i ≤ k, xi ∈ A}

We are building up to showing that the class of languages expressible by regular expressions
is the same as the class of languages accepted by finite automata: that is, in both cases it is
the class of regular languages.

Theorem 1. The class of regular languages is closed under regular operations.

∗The material in this set of notes came from many sources, in particular “Introduction to Theory of
Computation” by Sipser and course notes of U. of Toronto CS 364.

1



Corollary 2. For every regular expression, there is a finite automaton that recognizes the
same language as this regular expression generates.

We will postpone the proof of this theorem and the corollary slightly, to introduce a version
of finite automata which will make the proofs easier. This version looks more powerful;
however, we will show that the class of languages recognized by this model is the same as
the class of languages recognized by automata we considered so far (although not efficiently).

Definition 5. A non-deterministic finite automaton (NFA) is a 5-tuple (Q, Σ, δ, q0, F ), where
Q, Σ, q0 and F are as in the case of deterministic finite automaton (Q is the set of states, Σ
an alphabet, q0 is a start state and F is a set of accepting states), but the transition function
δ is δ : Q× (Σ ∪ {ε}) → P(Q). Here, P(Q) is the powerset (set of all subsets) of Q.

A non-deterministic finite automaton accepts a string w = w1 . . . wm if there exists a se-
quence of states r0, . . . rm such that r0 = q0, rm ∈ F and ∀i, 0 ≤ i < m, ri+1 ∈ δ(ri, wi).

There are two differences between this definition of δ and the deterministic case. First, δ
gives a (possibly empty) set of states, as opposed to exactly one state. Second, there can
be a transition without seeing any symbols, on empty string ε. Also, now the acceptance
condition is that there exists a good sequence of states leading to acceptance: there can be
many computational paths, some of which would lead to rejecting states, some would “die”
with no next state to go to, and, if the string is in the language, at least one will finish in
an accepting state.

Example 1. Consider the following two automata accepting a language of all strings ending
with 00. The first one is deterministic, the second non-deterministic. Notice how in the
non-deterministic automaton there are two arrows on 0 from q0 (so, δ(q0, 0) = {q0, q1}), no
arrows on 1 from q2 and no arrows at all from q2 (so δ(q2, 0) = δ(q2, 1) = ∅.) This example
does not have ε-arrows.

DFA

1

q0 q1 q2

0

1

0

1

0

q0 q1 q2

0

0,1

0

NFA

Consider possible executions of this NFA on string 101000. From q0 on 1 there is just one
choice: stay at q0. On the second symbol, there are two choices: stay at q0 or go to q1. The
computational branch that goes to q1 dies at the next step: there is nowhere to go from q1

on 1. The first computational branch survives, there the automaton stays in q0 on the 3rd
symbol. On the 4th symbol, 0, there is a choice again: you can see that moving to q1 and
then to q2 will make it get stuck on the last 0. Similarly, not going to q1 on the 5th symbol
will make it finish in a reject state (either q0 or q1). Finally, an accepting sequence of states
for string 101000 is: q0, q0, q0, q0, q0, q1, q2.

Now, with this definition of NFA, we are ready to prove the Corollary 2.

2



Proof. Recall the recursive definition of regular expressions: there were three base cases,
and for the recursive step the three rules were union, concatenation and star. The theorem
1 (which we will prove later) gives us the recursive step. More precisely, if regular expres-
sions R1 and R2 generate the same languages as recognized by finite automata N1 and N2,
respectively, then the closure under union operation gives us an automaton for a language
L(N1) ∪ L(N2), which is the same set of strings as R1 ∪R2. Similarly, the theorem gives us
automata for recognizing R1 ◦R2 and R∗

1 given automata recognizing R1 and R2. So all that
is left to prove is the base case.

There are three parts of the base case, and for each we will construct a NFA accepting it.

1) R = a, for some a ∈ Σ. Take the NFA

a

.

2) R = ε Define the corresponding NFA as .

3) R = ∅ Then, take an NFA accepting nothing. .

The proof follows by structural induction. Formally, suppose R is a regular expression; we
will show how to construct a NFA recognizing the same language. If R is of the form a
or ε or ∅ then use the corresponding automaton from the previous paragraph. Otherwise
R = R1 ∪ R2 or R = R1 ◦ R2 or R = R∗

1. By induction hypothesis, there exist NFAs N1

and N2 recognizing languages of R1 and R2 respectively. Now, by the theorem 1 there is an
NFA N with L(N) = L(N1) ∪ L(N2). Thus, a regular expression R = R1 ∪ R2 generates a
language L(N). The arguments for R1 ◦R2 and R∗

1 similarly follow from theorem 1.

To give an intuition for the proof of theorem 1 for the case of union, as well as illustrate the
use of ε-arrows, consider the following example.

Example 2. Consider the language of strings over {0, 1} starting with either 00 or 11. Here,
the ε-arrows at the beginning allow us to start either at the automaton recognizing strings
starting with 00 or at the automaton recognizing strings starting with 11.

ε

0 0

1

0,1

q1 q2 q3

q0

q5q4

1

q6

0,1

ε

.

3


