
CS 3719 (Theory of Computation and Algorithms) –
Lecture 3

Antonina Kolokolova∗

January 10, 2011

1 Finite Automata

In the last lecture, we talked about regular expressions. A natural question to ask is how
powerful and how complex regular expressions are. In particular, are there languages that
cannot be expressed using regular expressions? And how much of computational resources
are needed to find out if a given string matches regular expression?

To answer these questions, we will introduce a model of computation called Finite Automata.
This is a pretty simple model, in that it will have no memory, and just process the input
string symbol by symbol.

Example 1 Most of you have seen buses where you open the door by waving a hand in
front of it. The door would not open, though, if the bus is moving, and would close when
the motion sensor stops receiving the “wave” signal.

Let’s describe a possible controller for a door like this. It will have two states: open and
closed, and 4 pairs of possible events (both moving and waving, waving not moving, moving
not waving and neither). Also, we will require that at the power-up the door is closed, and
it is closed at power-down.

Both W., not M M., not W Neither
Open Closed Open Closed Closed
Closed Closed Open Closed Closed

no W andM, or both, or none

OPENCLOSED

W and no M

W and no M

no W andM, or both, or none

∗The material in this set of notes came from many sources, in particular “Introduction to Theory of
Computation” by Sipser and course notes of U. of Toronto CS 364.

1

The circles denote the states, and the arrows denote inputs. The unlabeled arrow pointing
to the “Closed” state denotes that the controller starts when the door is closed; it is a
double-circle to denote that it is also a final state before power-down.

Note that this kind of controller does not have any memory: all it does is look at the input
symbol by symbol, and change its state accordingly. It would only have finitely many states.

Here is another example of a problem that can be solved by a similar kind of device.

Example 2 The following finite automaton re-
ceives a string of bits (0 and 1), and should finish in
a final state (double-circle) if and only if the string
contains an odd number of 1s.

0

ODDEVEN

1

0

1

More precisely, we define (deterministic) Finite Automata as follows.

Definition 1 A (deterministic) finite automaton (a DFA) is a 5-tuple (Q,Σ, δ, q0, F), where

1) Q is a finite set of states.

2) Σ is the alphabet (a finite set of symbols).

3) δ : Q× Σ→ Q is the transition function (pronounced as “delta”).

4) q0 ∈ Q is the start state

5) F ⊆ Q is the set of accept (final) states.

We say that a DFA accepts a string w = {w0 . . . wn−1} if there exists a sequence of n states
r0, . . . , rn such that r0 = q0, rn ∈ F and ∀i, 0 ≤ i < n, δ(ri, wi) = ri+1. A DFA accepts
(recognizes) a language L if it accepts every string in L, and does not accept any string not
in L. A language is called a regular language if it is recognized by some finite automaton.

So to fully specify a finite automaton it is sufficient to say which
states it is composed of (Q), what are the possible input symbols
(Σ), where to start (q0), where to end on good strings (F) and, the
main part, what are the arrows and labels on them (δ). In example 2,
Q = {even, odd}, Σ = {0, 1}, q0 = even, F = {odd} and δ is encoded
by the following table:

0 1
even even odd
odd odd even

For example, on the string 1011001 it will go through the sequence of states “even, odd,
odd, even, odd, odd, odd, even”, ending in a non-accepting state; but a string 101100 it will
accept. So this automaton accepts a language of all strings over 0,1 in which the number of
1s is even.

2

Example 3 This automaton recognizes the
language of all strings that contain 00.

0,1

1

q0 q1 q2

0

1

0

Example 4 This automaton recognizes the
language of all strings that start with 00.

0,1

q0 q1 q2

0 0

0,1

1
1

1.1 String matching

One area where automata have found much use is in string matching. Here, the pattern
string (of length m is encoded by an automaton, which then gets the text (of usually much
larger length n) as an input; the automaton should end in an accepting state if and only
if this pattern occurs in the text. Such an algorithm runs very fast: in time O(n|Σ|) plus
time it takes to build an automaton: easy O(m3) (ignoring |Σ|); can be as efficient as .O(m).
In particular, Knuth-Morris-Pratt algorithm you have seen in CS 2711 can be viewed as
constructing a DFA in its preprocessing stage: think symbols of the pattern corresponding
to the states q1 . . . qm, matching transitions going qi to qi+1 and the partial match table
encoding non-matching transitions.

Example 5 Suppose you want to match a string “3719” in a file (here, take Σ to be all
symbols that can occur in a text file). It is enough to feed the text from the file to this DFA.

3

q0 q1 q2 q3 q4

ΣΣ

3 7 1 9

−{3}

Σ

Σ

Σ

−{3,7}

−{1,3}
−{3,9}

3

3

Example 6 To make it more interesting, let’s build an automaton for a string with repeated
letters, for the same Σ. Notice how backward transitions correspond to the “suffix matches
the prefix” jumps in the KMP algorithm.

−{1,3}

q0 q1 q2 q3 q4

ΣΣ

3 3 1 1

3

3−{3}

−{3}Σ

Σ −{1,3}
Σ

3

