
CS 3719 (Theory of Computation and Algorithms) –
Lecture 18

Antonina Kolokolova∗

February 17, 2011

1 Undecidable languages

In this lecture we will show that even though Turing machines are considered to be as
powerful as any algorithm we can think of, there are languages that are not computable by
Turing machines. Thus, for these languages, it is likely that no algorithm we can think of
would work.

We will present two proofs of existence of undecidable languages. The first proof is non-
constructive, using Cantor’s diagonalization. The second proof presents an actual language
that is undecidable.

1.1 Diagonalization

The Diagonalization method is used to prove that two (infinite) sets have different cardinal-
ities, that is, a set A is larger than the set B. By definition of cardinalities, this means that
there is no one-to-one correspondence between elements of the two set, so the elements of
A cannot be “enumerated” by elements of B. The proof is by contradiction: assume that
there is such a enumeration. Then, construct an element of A which is not in the list. In our
case, the larger set A will be the set of all languages (for simplicity, over Σ = {0, 1}, but any
alphabet with at least 2 symbols will work). And B will be the set of all Turing machines.

First, let us say how we describe languages. Recall that a characteristic string of a set
is an infinite string of 0s and 1s where, for a given order (usually lexicographic order) of
elements in the set there is a 0 in ith position in the string if ith element in the order is
not in the set and 1 if it is in the set. For example, for a set L = {1, 01} over {0, 1}∗
the characteristic string would be 00101000...00..., since out of the lexicographic ordering

∗The material in this set of notes came from many sources, in particular “Introduction to Theory of
Computation” by Sipser and course notes of U. of Toronto CS 364.

1

{ε, 0, 1, 00, 01, 10, 11, 000, . . . } of {0, 1}∗ only the 3rd and 5th elements are in L. Thus, for
every language over {0, 1}∗ (or any alphabet with at least 2 elements) there is a (unique)
characteristic string describing this language.

Now, we need to describe Turing machines and state how to enumerate them (show that the
set of all Turing machines is countable). For that, we show that every Turing machine can
be encoded by a distinct finite binary string (and is thus a subset of all finite binary strings,
which is countable since every string can be treated as a binary number with the leading 1
missing).

To encode a Turing machine, it is sufficient to write, in binary, the tuple (Q, Σ, Γ, δ, q0, qaccept, qreject).
However, we are not interested in specific names of symbols in Q, Σ, Γ; we are just interested
in how many symbols are in each. A Turing machine which accepts all even-length strings
over {a, b} operates exactly the same way as a Turing machine accepting all even-length
strings over {0, 1}, with a changed to 0 and b changed to 1 everywhere in its description.
We assign an order to elements of Q, Σ and Γ, and refer to elements as 1st symbol of Σ, 5th
state in Q and so on. So all we need to write is the number of states in Q (for simplicity,
we can even rename states to have q0 be the first state in the list, qaccept second and qreject

third, since every Turing machine will have these three states), number of symbols in Σ and
Γ (say Γ consists of Σ followed by t followed by possible extra symbols). Finally, we need
to write out δ, using the indices of symbols in Q, Σ and Γ in the description of transitions.

Here is one way of doing the description. We can start by writing |Q| 1s, then a 0, then
|Σ| 1s, then another 0, then |Γ| 1s, and a 0 again. We could also write all elements of δ in
unary (since it is finite), but we can also do so in binary, by introducing a special “separator”
symbol , into Σ. If we have to stick to Σ = {0, 1}, then we can still write δ in binary as
follows: associate “11” with ,, “00” with 0 and “01” with 1. For example, say we want
to encode a transition (q3, a) → (q4, b, L). With separators, it can be coded in binary as
11, 0, 100, 1, 0 (here, code L by 0 and R by 1). Using the transformation to encode the
transition in binary obtain 010111001101000011011100. Note that this method of coding
allows us to talk about all sorts of objects as an input to a Turing machine, be it Java code
or descriptions of graphs.

Notation 1. We will use the notation 〈M〉 to mean a binary string encoding of a Turing
machine M . We can use the same notation to talk about encodings of other objects, e.g.
〈M, w〉 encodes a pair Turing machine M and a string w; 〈N〉 encoding a NFA N , 〈G〉 for
a graph G and so on,

Now, notice that for every Turing machine there is a finite binary description. Treating
this description as a binary number, obtain an enumeration (by a subset of N of all Turing
machines. Finally, we can do the diagonalization argument. Start by assuming that it is
possible to enumerate all languages by Turing machines. Write elements of characteristic
strings as columns, and Turing machine descriptions as rows. Put a 1 in cell (i, j) if the ith

Turing machine Mi accepts string number j in the enumeration, and 0 if it does not accept
this string. We obtain the following table, and use diagonalization argument to construct a

2

language not recognized by any Turing machine. Indeed, if that language were recognized
by some Turing machine, say Mk, it would be the string in the kth row of the table; however,
it differs from the diagonal language in kth element.

M1 0 0 1 1 0 1 1 0 1
M2 1 1 1 1 1 0 0 1 1
M3 1 0 0 0 0 1 1 1 1
M4 1 1 0 1 1 0 0 1 1
M5 0 0 1 1 1 1 1 0 0
ots

...
...

...
...

...
...

...
...

...
...

D 1 0 1 0 0 1 1 0 1

2 ATM is undecidable

In this section we will present a specific, very natural problem and show that it is undecidable.
It will lead us to a whole class of problems of similar complexity.

Definition 13. The language ATM = {〈M, w〉|M is a Turing machine and w is a string
over the input alphabet of M and M accepts w}

That is, the language ATM consists of all pairs M, w of Turing machine + a string in L(M).

Theorem 15. ATM is semi-decidable, but not decidable.

Proof. Let us first show that ATM is semi-decidable. That is, there exists a Turing machine
MATM

accepting all and only strings in ATM . Note that if M does not halt on w, neither
does MATM

on 〈M, w〉

MATM
: On input 〈M, w〉
Simulate M on w. If M accepts w, accept. If M rejects w, reject.

Note that the above algorithm is essentially an interpreter; that is a program which takes
as input both a program P and an input w to that program, and simulates P on input w.
In this case the program P is given by a Turing machine M . A Turing machine interpreter
is often called a universal Turing machine. Turing described a universal Turing machine in
some detail in his original 1936 paper, an ideal which paved the way for later interpreters
operating on real computers.

Now, let us show that ATM is not decidable. Assume for the sake of contradiction that it is,
so there is a Turing machine H that takes as an input 〈M, w〉 and halts either accepting (if
M accepted w) or rejecting (if M did not accept w). Now, define the following language:

3

Diag = {〈M〉|M is a Turing machine and 〈M〉 /∈ L(M)}.

That is, Diag is a language of all descriptions of Turing machines that do not accept a string
that is their own encoding. This is exactly the diagonal language from our diagonalization
table.

Now, notice that H deciding ATM can also be used to decide Diag: H(〈(M, 〈M〉)〉) halts and
accepts if M accepts its own encoding and rejects if M does not accept its own encoding. A
decider HDiag for Diag would run H(〈(M, 〈M〉)〉) and accept if H rejects, reject if H accepts.
But what should it do on input 〈HDiag〉? It cannot accept this input, since that would mean
that HDiag accepts its own encoding, so it should not be in Diag. And it cannot reject its
own encoding, since it would make it a Turing machine not accepting its own encoding and
thus it has to be in Diag. Contradiction.

This contradiction is akin to Russell’s paradox from logic, and other self-referential paradoxes
of the form “I am lying”.

4

