
CS 3719 (Theory of Computation and Algorithms) –
Lecture 17

Antonina Kolokolova∗

February 15, 2011

0.1 Multi-tape Turing machine

Often it is convenient to describe a Turing machine using several tapes, each dedicated to a
specific function. For example, if we want to simulate a random-access machine, we can have
a dedicated “address tape” where the machine writes the address of the cell it wants to visit
next. Let us define a k-tape Turing machine to have k tapes, with a separate head on each
tape, and a transition function δ : Q× Γk → Q× Γk ×{L, R}k. That is, now for every state
there are k characters the heads are pointing to, and, respectively, k-tuple of characters to
overwrite the current ones and k-tuple of directions, one for each tape. Note that there is
just one state, not k.

Here we will show that this definition is equivalent to the traditional one-tape Turing ma-
chine. There are several ways to do this simulation, similar to two ways of simulating a
two-way tape Turing machine by a one-way tape TM. In the first case, we write strings
corresponding to (non-blank part of) the tapes one after another, with a delimiter between
strings on different tapes. Then, whenever a new symbol needs to be added, the rest of the
tapes is shifted (just like putting a new symbol to the left of the used part of the tape in
simulating two-way tape TM by one-way). Here, we use special symbols (“marked” versions
of symbols of Γ) to represent a symbol with head pointing to it.

Another, a more interesting way is to expand the alphabet to make a symbol of each k-tuple
(for k tapes) of symbols of the original alphabet (also with marked versions of symbols of
Γ). This is similar to the second way of simulating two-way tape TM, where we used new
symbols for the pairs of symbols from Γ; again, we need markers for the head positions.

In both cases, the Turing machine works by scanning all tape from the beginning to the
end noting head positions and symbols under them. On the way back, it makes the changes
according to the transition table.

∗The material in this set of notes came from many sources, in particular “Introduction to Theory of
Computation” by Sipser and course notes of U. of Toronto CS 364.

1

0.2 Non-deterministic Turing machines

In non-deterministic computation, the transition function δ, rather than giving exactly one
choice for the next step, gives a (possibly empty, but finite) set of choices. So the non-
deterministic computation is not a sequence, but rather a tree, and it is successful (accepting)
if at least one leaf is accepting. We call one branch of this tree a computational path. Each
such path can be described by a sequence of choices the Turing machine made. The arity d
of the tree is the maximum over all q ∈ Q, a ∈ Γ of |δ(q, a)|. So each node in the tree can
be described by a sequence of numbers each from 1 to d saying which transition was chosen
from a set (in, say, lexicographic order). Of course, some sequences do not correspond to
any node, but it is OK as long as any node has a unique sequence describing it.

Recall that non-deterministic Finite Automata recognize the same class of languages as
deterministic ones; however, for pushdown automata there are languages that cannot be
recognized without non-determinism. Which of the two cases holds for the Turing machines?

We will show here that it is possible to simulate a non-deterministic Turing machine by a
deterministic one, although this simulation is not efficient. This efficiency issue is one of
the main open problems in theoretical computer science, the famous P vs. NP question,
whether efficient non-deterministic Turing machine computation can always be simulated by
an efficient deterministic one. We will define precisely what we mean by efficient in a few
lectures.

In order to simulate non-deterministic computation by deterministic we need to find if there
is an accepting leaf in its computation tree. Since it is a Turing machine, there may be infinite
branches in the tree (corresponding to infinite loops of the Turing machine), so we cannot
do a depth-first search of this tree. However, we can do a breadth-first search. If we don’t
care at all about efficiency, we can do the simulation by just remembering which node we
were in last, and restarting the computation from the beginning, making non-deterministic
choices according to the path to the next node.

For simplicity, let’s use the multi-tape Turing machine we just defined. Suppose our TM
has three tapes: an input tape on which it will not write, a work tape, and a “address”
tape, which in this case will keep track of the current computation branch. The address of
a node here is a the sequence of choices that led to this node. The machine will work as
follows: at every stage of the computation, starting with writing 0 on the address tape, it
will run the computation from the start to the next non-deterministic choice following the
sequence of choices written on the address tape. When it reaches a choice not on the tape, it
will increment the address tape to the next node in the breadth-first order, and restart the
computation. If one of the choices leads to a non-existing transition or reject state, abort
the computation, increment the node and restart. If qaccept is reached, accept.

Since this Turing machine will eventually get to all nodes in every level, if there is an
accepting leaf it will be found. Otherwise it will run forever. A check can be added to see if
all nodes on the last level aborted and then reject.

2

