
CS 3719 (Theory of Computation and Algorithms) –
Lecture 15

Antonina Kolokolova∗

February 10 2011

1 Turing machines

Now we are moving on to the model of computation which we will use for the rest of the
class: the Turing machine.

Alan Turing was working on a problem posed by Hilbert: does there exist an algorithm
that for any statement in the language of mathematics would state if this statement is prov-
able? The original problem asked for an algorithm that for any statement of mathematics
would state whether it is true or false; Gödel has shown (his famous Incompleteness The-
orem) that there are statements of mathematics for which such answer cannot be given.
There were several mathematicians working on this problem at that time; notably, Alonco
Church solved this problem (to give a negative answer) at about the same time, by inventing
lambda-calculus. Turing’s approach is somewhat more computational: he defined a model
of computation which we now call the Turing machine, equivalent to Church’s model in
terms of power, and used it to show undecidability results, thus giving a negative answer to
Hilbert’s problem.

Definition 10 (Church-Turing thesis). Anything computable by an algorithm of any kind
(our intuitive notion of algorithm) is computable by a Turing machine.

Since this statement talks about an intuitive notion of algorithm we cannot really prove it;
all we can do is that whenever we think of a natural notion of an algorithm, show that this
can be done by a Turing machine.

∗The material in this set of notes came from many sources, in particular “Introduction to Theory of
Computation” by Sipser and course notes of U. of Toronto CS 364.

1



2 Definition of a Turing machine

The weakness of finite automata was the lack of memory; pushdown automata had some
memory, but only a limited access to it. A natural next step would be to take a finite
automaton and add an unrestricted-access unlimited memory to it. This is essentially the
intuition behind the definition of a Turing machine.

q

s

Memory is given to a Turing machine in form of an infinite tape.
The Turing machine has a “head” which points to a cell on the tape.
The head can both read and write in that cell, and can move in
either direction. In the simplest definition, every cell contains just
one symbol, and in one step of the computation the head can move
by one position to the left or to the right.

Definition 11. Formally, a Turing machine is a 6-tuple M = (Q, Σ, Γ, δ, q0, qaccept, qreject).
Here, Q is a finite set of states as before, with three special states q0 (start state), qaccept and
qreject. The last two are called the halting states, and they cannot be equal. Σ a finite input
alphabet. Γ is a tape alphabet which includes all symbols from Σ and a special symbol for
blank, t. Finally, the transition function is δ : Q × Γ → Q × Γ × {L, R} where L, R mean
move left or right one step on the tape.

At the start of the computation the input is written on the tape and the head points to the
first symbol of the input. Sometimes Turing machines are defined to have a tape which is
only infinite in one direction; in that case, the first symbol of the input is in the first cell of
the tape. We will prove soon that these two definitions are equivalent.

The simplest Turing machine halts on an input by entering the state qaccept or qreject in some
point in the computation. Usually we assume that there are no transitions from qaccept or
qreject. It accepts its input if it halts in qaccept.

Example 1. Recall that we have shown that the language {ww|w ∈ {a, b}} is not context-
free. Here we will show how to design a Turing machine accepting this language.

For simplicity, let’s first design a Turing machine accepting the language {w#w|w ∈ {a, b∗}.
Then we will say how to modify it to accept our original language.

We will be constructing a TM M = (Q, Σ, Γ, δ, q0, qaccept.qreject). The symbols in the input
alphabet are Σ = {a.b.#}.

M works as follows. It starts in a state q0 pointing to the first symbol of the first copy of w.
A symbol in the cell it is pointing to can be one of {a, b, #,t}. If it is a or b, then M has
to remember it (by going to q1 or q2, respectively) and scan till it is past the # sign. Then,

2



a b # t o
q0 (q1, o, R) (q2, o, R) (q3, #, R) qreject (q0, o, R)
q1 (q1, a, R) (q1, b, R) (q4, #, R) qreject (q1, o, R)
q2 (q2, a, R) (q2, b, R) (q5, #, R) qreject (q2, o, R)
q3 qreject qreject qreject qaccept (q3, o, R)
q4 (q6, o, L) qreject qreject qreject (q4, o, R)
q5 qreject (q6, o, L) qreject qreject (q5, o, R)
q6 (q6, o, L) (q6, o, L) (q6, o, L) (q0,t, R) (q6, o, L)

Figure 1: A transition table for TM M recognizing {w#w|w ∈ {a.b}∗}.

it has to see if the corresponding first symbol of the second copy of w is a or b. After that,
M returns to the second symbol of the first copy and repeats till it runs out of a′s and b′s.
If at that point it ran out of symbols on both sides of #, then accept, otherwise reject.

How do we make sure that the same symbol is not counted twice? Let’s introduce a new
symbol into Γ, call it o (the name does not matter, as long as it does not occur in Σ and is
not t). We will use it to mark the cells that we have already visited on both sides of #, so
we don’t count them again.

Now, each iteration of the computation proceeds as follows. Start in state q0; then move
right changing to q1, q2 or q3 depending on whether the cell contained a, b or #. In the
latter case, we have matched all symbols in the first copy of w and need to check if there
is anything left in the second copy; so scan right staying in q3, and reject if seeing a or b;
accept if got to a t (end of input). In the first two cases, mark the cell with o and move
right until # is found. Then, change state: from q1 to q4 and from q2 to q5: here, q4 will be
looking for an a and q5 for a b. In these two states, skip over o’s; if a wrong symbol is seen
first, reject, otherwise change to the “going-back state” q6.

If M has a doubly-infinite tape, then in q6 M can move left until it hits a t before the input,
at which point it changes to q0 and moves right. If the tape has a beginning, we’ll need to
use an extra state: scan till # in q6 and then till the rightmost o of the first copy of w in q7.
The table lists all the transitions for the doubly-infinite tape case.

This Turing Machine accepts a language {w#w|w ∈ {a, b}∗}. How can we modify it to
accept the language {ww|w ∈ {a, b}∗}? The simplest way to do it is to find the middle
(by going back-and-forth from the beginning to end marking cells; in this case we’d want
different markers for a and b). Then, insert # in the middle and move the second copy one
cell left. We are back to the {w#w} case, except need a different name for q0 and our a and

b became some kind of marked
.
a and

.

b, so need to rename the columns (and add rejects for
seeing old a and b)

3


