
CS 3719 (Theory of Computation and Algorithms) –
Lecture 13

Antonina Kolokolova∗

February 4, 2011

In the last lecture we proved one direction of the equivalence between the class of languages
accepted by pushdown automata and a class of languages generated by context-free gram-
mars. There, we have shown that for every context grammar we can construct a pushdown
automata accepting the same language. In this lecture, we will prove the opposite direc-
tion: starting from a pushdown automaton we will construct a corresponding context-free
grammar.

Lemma 8. For every pushdown automaton N = (Q, Σ, Γ, δ, q0, F there exists a context-free
grammar G such that L(N) = L(G).

Proof. We need to create a grammar G that would generate a string w if and only if N accepts
w. That is, the start symbol S of G would derive w if and only if there is a computation
path (possibly with loops) from q0 to some qa ∈ F in N . For simplicity, let us assume that
there is just one accept state qa (otherwise, introduce a new state and make ε-transitions
from everything else in F to this new state qa).

How do we encode a computational path in a PDA by a grammar? The is a problem: every
rule of the grammar must be finite, and yet somehow it needs to deal with the stack of the
PDA, which can be arbitrary large. One way to get around this problem is to look at the
PDA as composed of pieces that start and end with the same stack content, and make up
a rule for each such piece. In the examples we saw our PDAs would always accept when its
stack is empty, so at least for the pair (q0, qa) the property that the stack is the same in both
situations applies.

Now, how do we encode what a PDA is doing between two states q0 and qa, or, more generally,
between qi and qj where its stack content is the same? At some point after the start state, if
N uses its stack at all, it will put a symbol on the stack. Then sometime before the accept
state it will pop a symbol off the stack. There are two possibilities here. Either the first
transition from qi puts an element (say, t) on the stack and the last transition to qj takes
that same element t out, or the element t is popped sometime before reaching qj. In the

∗The material in this set of notes came from many sources, in particular “Introduction to Theory of
Computation” by Sipser and course notes of U. of Toronto CS 364.

1

first case, a rule encoding this part of the computation is of the form A → aBb, where a, b
are input symbols (possibly ε) corresponding to these transitions. Otherwise, if t could be
popped somewhere before reaching qj we can encode this computation by a rule of the form
A → BC – the place where B ends and C starts corresponds to a state qk with the same
content of the stack as in qi and qj.

At this point, let us name the variables of the grammar. Since we are talking about encoding
paths from one state to another, we introduce a variable Aqiqj

for every pair of states qi, qj ∈
Q. That is, if N has n states, then G will have n2 variables. The start variable will be Aq0,qa

(since we assumed there is only one accept state). The non-terminals of G are the input
alphabet of N , so Σ is the same (after all, that is the alphabet of the string w). Now we just
need to describe the rules R of G.

Before we proceed describing the rules formally, let us list all the simplifying assumptions
about N that we need. Two of them we mentioned already.

1) N has exactly one accept state qa.

2) The stack is empty when N accepts.

3) Every transition either pushes a symbol on the stack, or pops a symbol from the stack,
but not both.

The last assumption helps us to talk separately about “pushing” transitions and “popping”
transitions, and avoid discussing what happens on stretches of computation where stack is
not used at all. Any automaton can be converted with one with these three properties: we
have discussed how to deal with the first two, and for the last one replace every transition
which does both by a separate pop and then (on ε input) push transition, and every transition
that does neither with two pushing then popping an arbitrary dummy symbol.

Now, V = {Apq|p, q ∈ Q}, S = Aq0,qa and Σ is the same. The rules R of the grammar are
the following.

1) ∀p, q, r, s ∈ Q, t ∈ Γ, a, b ∈ Σ, if (r, t) ∈ δ(p, a, ε) and (q, ε) ∈ δ(s, b, t) then add a rule
Apq → aArsb.

2) ∀p, q, r ∈ Q, add a rule Apq → AprArq.

3) ∀p ∈ Q, add a rule App → ε.

The first rule accounts for the case when there is a path putting t on the stack on the first
transition out of p and popping the same t on the last transition into q. The second rule
covers the case when a path can consist of several pieces returning to the same state of the
stack. Finally, the last rule allows us to stop unwinding the recursion by stating that getting
from a state to itself can be done with no input symbols seen.

2

Example 1. Consider the following very simple automaton accepting just a string ab. We
will construct a grammar G = {V, Σ, R, S} generating the same language.

a
q0

$
q1 qa

, ε −> b,$ −> ε

It has 3 states, so |V | = |Q|2 = 9. V = {Aq0,q0 , Aq0,q1 , Aq0,qa , Aq1,q0 , Aq1,q1 , Aq1,qa , Aqa,q0 , Aqa,q1 , Aqa,qa}.

Here, let Σ = {a, b}. The start state is S = Aq0,qa . Now we will describe the rules R.

The only symbol ever being put on the stack is $. So there exists, just one, set of states
and symbols giving us a rule of the first type: p = q0, q = qa, r = s = q1, t = $ and
a, b are the actual symbols a, b from the alphabet (if we modify the example to have the
automaton accepting 01 rather than ab, then we would have a = 0, b = 1). So we add a rule
Aq0,qa → aAq1,q1b.

Now, for every triple of states we add a rule Apq → AprArq. There will be 33 = 27 such rules,
starting with Aq0,q0 → Aq0,q0Aq0,q0 .

Finally, add rules Aq0q0 → ε, Aq1q1 → ε, and Aqaqa → ε.

In this grammar there is a derivation of ab: Aq0qa ⇒ aAq1q1b ⇒ aεb = ab. You can check
yourself that this is the only string this grammar generates.

To complete the proof we need to show that our construction really works: that is, that the
resulting grammar generates every string in L(N) and does not generate any spurious ones.
We will prove these claims in a more general form, for arbitrary start and end states.

Claim 9. If string x can take N from state p to state q starting and ending with an empty
stack, then Apq generates x.

Proof. The proof is by induction on the number of steps of computation of N on x.

Base case: 0 steps. Then p = q, and x = ε. So the rule Apq → ε applies; thus, Apq ⇒ x.

Induction step: Suppose there is a computation of length k + 1 of N on x starting at state
p and ending in state q, where the stack is the same (empty) at the start and end of this
computation. Consider two cases, as in the construction: either in this computation the first
symbol t pushed on the stack was popped in the last step of this computation, or not. In the
first case, the rule Apq → aArsb applies for some a, b, r, s. Since we assumed that the part of
the computation from state r to state s does not touch the symbol t, this computation would
be the same on the empty stack. The length of this computation is k − 1, so the induction
hypothesis applies. Therefore, if x = ayb then Ars

∗⇒ y, and so Apq ⇒ aArsb
∗⇒ ayb = x.

Now suppose that t was popped of the stack, in this computation, before the transition

3

to state q. Then let r be a state in transition to which t was popped off the stack. By
assumption, computations from q to r and from r to p both start and end with an empty
stack, and both have length at most k, so the induction hypothesis applies. That is, let
x = yz, where y is read on the path p to r and z from r to q. Then Apr

∗⇒ y and Arq
∗⇒ z;

thus, since the rule Apq → AprArq is in the grammar G, Apq ⇒ AprArq
∗⇒ yz = x.

The corollary of this claim is that every string accepted by N is generated by G. Now it
remains to show that every string not accepted by N is not generated by G, or equivalently,
taking the contrapositive, that every string generated by G is accepted by N .

Claim 10. If Apq generates x, then there is a computational path in N on x from p to q
starting and ending with the same stack content, which remains unchanged in the computa-
tion.

Proof. The proof is by induction on the length of the derivation. For the base case, the only
rule that applies is App → ε. For the induction step, analyze the two possibilities for the first
rule in the derivation. We omit the details; see Sipser’s book Claim 2.30 for details.

4

