
CS 3719 (Theory of Computation and Algorithms) –
Lecture 11

Antonina Kolokolova∗

January 28, 2011

0.1 Regular languages vs. context-free languages

Last class we have seen an example of a nonregular language that is context-free. But are
there regular languages that are not context-free? Here, we will show that indeed the class
of regular languages is a (strict) subset of the class of context-free languages, by showing
that every regular language is context-free.

Note that once we show that pushdown automata accept exactly context-free languages
the proof becomes easy: just construct a pushdown automaton out of a NFA which would
ignore the stack; you can see that this PDA would accept the same language as the NFA.
But as a warm-up for showing the equivalence between context-free languages and pushdown
automata, let us show directly that every regular language can be generated by a context-free
grammar.

As an example of the ideas involved in the proof, let us show that context-free languages
are closed under the star operation. Suppose that G is a context-free grammar. We would
like to create a grammar for L(G)∗, where each element is a finite string consisting of 0 or
more concatenated strings from L(G). Let S be the start symbol of G. Now, add a rule
S → SS|ε to the grammar. Suppose a string w consists of k occurrences of strings from
L(G). If k = 0, then G generates w by the S → ε part of the rule. Otherwise, if k > 0,
then apply the first part of the rule k − 1 times, and then use the rest of the rules of the
grammar. This shows that every string in L(G)∗ is generated by the new grammar. But
how can we make sure that no spurious strings are generated? A trick we can use here is to
modify the original grammar first so that there are no more rules using S, other than the
start rule. For that, just introduce a new start symbol S0 and add a rule S0 → S. Now,
think of a parse tree for this grammar. Once a symbol other than S0 appears on a path
from the root down, S0 cannot appear anywhere below it. So the whole subtree will be
generated according to the rules of the original grammar, resulting in a string from G. Since

∗The material in this set of notes came from many sources, in particular “Introduction to Theory of
Computation” by Sipser and course notes of U. of Toronto CS 364.

1

this applies to every subtree (except for ones with ε-leaves which can be ignored as part of
the string), the resulting string will be a concatenation of strings in L(G).

Theorem 7. Every regular language is context-free.

Proof. Let A be a regular language. Then there exists a DFA N = (Q, Σ, δ, q0, F) such that
L(N) = A. Build a context-free grammar G = (V, Σ, R, S) as follows. Set V = {Ri|qi ∈ Q}
(that is, G has a variable for every state of N). Now, for every transition δ(qi, a) = qj add a
rule Ri → aRj. For every accepting state qi ∈ F add a rule Ri → ε. Finally, make the start
variable S = R0.

Example 1. Consider a deterministic automaton with 3 states accepting all strings con-
taining ab which has transitions δ(q0, a) = q1 and δ(q1, b) = q2, among others. Here, q0 is a
start state and F = {q2}. Add rules R0 → aR1, R1 → bR2, R2 → ε (and similarly for the
rest of transitions). Make S = R0. You can check that the resulting grammar generates all
strings with a substring ab.

0.2 Arithmetic expressions

A canonical example of use of context-grammars is in parsing. In particular, here we will
see how to parse an arithmetic expression using context-free grammars.

Example 2. Consider the following grammar G1:

EXPR → EXPR + EXPR|EXPR ∗ EXPR|(EXPR)|x|y|z|0|1|2|3

This grammar generates arithmetic expressions such as x + 2 ∗ y. However, there is a
problem: it generates it ambiguously, ignoring precedence rules. So evaluating the expression
according to the tree might give different answers, depending whether the first rule applied
was multiplication or addition.

EXPR EXPR

/ | \ / | \

EXPR + EXPR EXPR * EXPR

| / | \ / | \ |

x 2 * y x + 2 y

How would we modify the grammar to make it respect precedence rules? One way of doing it
is to give different names to parts of a sum vs. parts of a product and treat them differently.

Example 3. Consider the following grammar G1, with EXPR the start symbol.

EXPR → EXPR + TERM |TERM
TERM → TERM ∗ FACTOR|FACTOR
FACTOR → (EXPR)|x|y|z|0|1|2|3

2

Note that in this case for the arithmetic expression there is only one possible parse tree:

EXPR

/ | \

EXPR + TERM

| / | \

TERM TERM * FACTOR

| | |

FACTOR FACTOR y

| |

x 2

3

