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0.1 Regular languages vs. context-free languages

Last class we have seen an example of a nonregular language that is context-free. But are
there regular languages that are not context-free? Here, we will show that indeed the class
of regular languages is a (strict) subset of the class of context-free languages, by showing
that every regular language is context-free.

Note that once we show that pushdown automata accept exactly context-free languages
the proof becomes easy: just construct a pushdown automaton out of a NFA which would
ignore the stack; you can see that this PDA would accept the same language as the NFA.
But as a warm-up for showing the equivalence between context-free languages and pushdown
automata, let us show directly that every regular language can be generated by a context-free
grammar.

As an example of the ideas involved in the proof, let us show that context-free languages
are closed under the star operation. Suppose that G is a context-free grammar. We would
like to create a grammar for £(G)*, where each element is a finite string consisting of 0 or
more concatenated strings from L£(G). Let S be the start symbol of G. Now, add a rule
S — SS|e to the grammar. Suppose a string w consists of k occurrences of strings from
L(G). If k = 0, then G generates w by the S — € part of the rule. Otherwise, if k& > 0,
then apply the first part of the rule £ — 1 times, and then use the rest of the rules of the
grammar. This shows that every string in £(G)* is generated by the new grammar. But
how can we make sure that no spurious strings are generated? A trick we can use here is to
modify the original grammar first so that there are no more rules using S, other than the
start rule. For that, just introduce a new start symbol Sy and add a rule 5o — S. Now,
think of a parse tree for this grammar. Once a symbol other than Sy appears on a path
from the root down, Sy cannot appear anywhere below it. So the whole subtree will be
generated according to the rules of the original grammar, resulting in a string from G. Since
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this applies to every subtree (except for ones with e-leaves which can be ignored as part of
the string), the resulting string will be a concatenation of strings in £L(G).

Theorem 7. Fvery regular language is context-free.

Proof. Let A be a regular language. Then there exists a DFA N = (Q, %, 0, qo, F') such that
L(N) = A. Build a context-free grammar G = (V, X, R, S) as follows. Set V = {R;|¢; € @}
(that is, G has a variable for every state of V). Now, for every transition §(¢;, a) = ¢; add a
rule R; — aRR;. For every accepting state ¢; € F' add a rule R; — €. Finally, make the start
variable S = R,. O

Example 1. Consider a deterministic automaton with 3 states accepting all strings con-
taining ab which has transitions 0(qo,a) = ¢ and 6(q1,b) = ¢2, among others. Here, qo is a
start state and F' = {¢2}. Add rules Ry — aR;, Ry — bRy, Ry — € (and similarly for the
rest of transitions). Make S = Ry. You can check that the resulting grammar generates all
strings with a substring ab.

0.2 Arithmetic expressions

A canonical example of use of context-grammars is in parsing. In particular, here we will
see how to parse an arithmetic expression using context-free grammars.

Example 2. Consider the following grammar G;:
EXPR — EXPR+ EXPR|EXPR+ EXPR|(EXPR)|z|y|z]|0|1]2|3

This grammar generates arithmetic expressions such as = + 2 x y. However, there is a
problem: it generates it ambiguously, ignoring precedence rules. So evaluating the expression
according to the tree might give different answers, depending whether the first rule applied
was multiplication or addition.

EXPR EXPR

/1N /1A
EXPR + EXPR EXPR * EXPR

| / 1\ /1A I
X 2 *x y x + 2 y

How would we modify the grammar to make it respect precedence rules? One way of doing it
is to give different names to parts of a sum vs. parts of a product and treat them differently.

Example 3. Consider the following grammar G, with EXPR the start symbol.

EXPR — EXPR+ TERM|TERM
TERM — TERM x FACTOR|FACTOR
FACTOR — (EXPR)|z|y|z|0[1]2|3



Note that in this case for the arithmetic expression there is only one possible parse tree:

EXPR
/| \
EXPR + TERM
I /1 0\
TERM TERM *  FACTOR
| | |
FACTOR FACTOR y
| |
X 2



