
CS 3719 (Theory of Computation and Algorithms) –
Lecture 1

Antonina Kolokolova∗

January 6, 2011

This course will focus on the theory of computation, that is, problems that can (and cannot)
be solved computationally, and methods of doing so, when they exist. We will start by re-
viewing some methods of solving problems efficiently, and corresponding classes of problems.
Then, we will move to problems for which no efficient solution is known to exists (compu-
tational complexity). In order to formalize that, we will introduce some formal models of
computations: finite automata and Turing machines, in particular. Later, we will move to
proving unsolvability (computability theory).

1 Review of algorithm design paradigms

In this lecture, we review some of the main algorithmic design paradigms, using as an example
various versions of the Knapsack problem. Most of this material you probably saw in cs2711.

1.1 The Knapsack problem

Input: A list of n objects, each with a weight wi and a profit pi associated with it, and
a bound B ≥ 0. More precisely, the algorithm receives as an input n pairs of numbers
(w1, p1) . . . (wn, pn) and a number B. These numbers are not necessarily integers, but let’s
use integers to simplify our examples.

Output: A subset of maximal profit of input objects that “fits” (as a sum of weights) below B.
More formally, the output is a set S ⊂ {1, . . . , n} such that Σj∈Swj ≤ B and ∀S ′, Σk∈S′wk ≤
B → Σj∈Spj ≥ Σk∈S′pk

∗The material in this set of notes came from many sources, in particular “Introduction to Theory of
Computation” by Sipser and course notes of U. of Toronto CS 364.

1



To visualize this problem, you can think of a container ship that can only take certain limited
weight, and is trying to pick out the most profitable cargo. Or of a thief coming to museum
and trying to steal as much as can be carried out – likely picking a less expensive small
painting over an expensive statue.

For example, suppose that the input is {(3, 4), (5, 10), (7, 1), B = 9}. Then, S = {1, 2} will
give an optimal profit of 14. If B = 7, the best is S = {2}. And there could be several
optimal solutions: for example, for {(3, 4), (5, 10), (7, 14), B = 9} input the optimal answers
are either S = {1, 2} or S = {3}.

We will show here how to solve restricted versions of Knapsack, and give a general, not effi-
cient algorithm. Later in the course we’ll show that there is (under a believable assumption)
no algorithm for this problem better than backtracking or brute-force search.

1.2 Greedy algorithm example: Fractional Knapsack

Consider a version of Knapsack in which a portion of an object can be taken (e.g., think of
taking just a part of a bottle of medicine or perfume, or transporting bulk grains/beans). In
this case, the following simple algorithm solves the problem.

Algorithm FracKnapsack
Input: (w1, p1) . . . (wn, pn), B
Output: S, Frac, where S contains the set of whole objects,
and Frac = (index, portion) the name and fraction of the fractional object, if any.

Sort inputs in the order of decreasing profit per unit weight p1/w1 ≥ · · · ≥ pn/wn.
// The indices in S, Frac are in this order.
Sum← 0; i← 1

S ← ∅; Frac← null
while Sum + wi ≤ B do

S ← S ∪ {i}; Sum← Sum + wi

i← i + 1
end while
if Sum < B do

Frac← (i, pi ∗ (B − Sum)/wi)
return S, Frac

To show that this algorithm works, we’ll argue by induction. First, notice that if B ≥ 0 then
there exists some solution, and so there is an optimal one among them (since two solutions
can always be compared on their profit). Now, suppose that at step i of the algorithm
the partial solution Si.F raci computed by the algorithm can be extended to some optimal

2



solution Sopt, F racopt (that is, Si ⊆ Sopt and Fraci is either null or Fracopt). We will show
that at step i + 1 there is a (possibly different) optimal solution S ′

opt, F rac′opt such that
Si+1 ⊆ Sopt and Fraci+1 = null or Fraci+1 = Frac′opt.

There are three stages of the algorithm: 1) adding a whole object to S, 2) adding a fractional
object to Frac 3) Doing nothing (when the knapsack is already filled). We are only concerned
with the first two stages, because Si+1 = Si for the subsequent stages. In the first stage,
there are two possibilities a) either an object i + 1 being added is already in Sopt, then there
is nothing to prove b) or i + 1 /∈ Sopt. But notice that the only way b) can happen is when
there is another object j with exactly the same ratio: pi+1/wi+1 = pj/wj: if j had better
ratio, we’d already consider it in our sorting order. In that case, make S ′

opt by replacing
units of i with units of j. If there is more of i than of j, pushing the last object off Sopt and
Frac can only make the solution better; if there is more of j than of i, then there must be
other stuff as good as j to fill in the rest of the solution S ′

opt.

Now, since this argument works for every step, and nothing can be added to the solution
after reaching B, the resulting solution must be optimal.

1.3 Dynamic programming: knapsack with integer weights and
small bound

We can use dynamical programming to solve the Knapsack problem, but it would only be
efficient, loosely saying, if the bound is small, and weights are integers. In that case, we
build a dynamic programming table with objects (1 to n) and weights (from 0 to B). A
cell (i, w) in this table encodes the best way to pack objects from 1 to i into knapsack with
bound w.

Notice that this algorithm would not be good if B is large, e.g., on the order of 2n. In that
case, backtracking or brute-force search is preferred.

1.4 Backtracking: most general method for Knapsack problem

Build a decision tree, where on level i nodes split on putting vs. not putting i in the set.
Stop the branches that exceeded B. Record the best solution so far, and backtrack. In the
worst case, would have to visit pretty much all the leaves (e.g., all weights are the same
and all, maybe except one, fit). So this algorithm will have exponential running time in the
worst case.

Alternatively, can do a brute-force search: go through all subsets of weights as possible S,
and keep track of the best solution. This also takes exponential time.

3


