CS 2742 (Logic in Computer Science)
Lecture 8

Antonina Kolokolova

February 3, 2014

3 Resolution.

Recall that a formula is in the CNF (conjunctive normal form) if it is a A of Vs of literals
(variables or their negation.)

In this lecture we will talk about proving (or, actually, finding contradictions) statements
that are in this special form.

Definition 1 (Resolution rule). : Given two clauses of the form (C V x) and (D V —zx),
where C and D are (possibly empty) disjunction of variables, can derive a (possibly empty)
clause (C'V D).

That is,
(CVva)AN(DV-z)— (CVD)

where C'= ([; V- Vi) and D = (I} ...1},) for some literals. If there is a repeated literal,
only write it once.

Note that you may end up deriving an “empty” clause, that is, a V of zero literals. But the
only way this could happen is when two clauses being resolved are (x) and (—z). But x A -z
is always false, a contradiction. So deriving an empty clause proves that the original formula
was a contradiction (which is what we usually want to show).

Example 1. Consider the following statements:
p: it is sunny

q: the weather is good

r: I spend the day outside

Now consider the following argument:

19



pP—4q
qg—r

We want to prove that this is a valid argument, that is, p, p — ¢ and ¢ — r together imply
7 (this in general is called a transitivity law). Resolution proof method allows us to find
contradictions: so we represent this problem as a contradiction p A (p — ¢) A (¢ — 1) A —r.
Note that here again we are using the fact that the negation of an implication (in this case,
premises imply the conclusion) is a conjunction of premises and negation of the conclusion.

Resolution works with CNF formula, so the first step is to convert the formula above into
CNF. In this case, it is very easy: just apply the definition of implication to the second and
third clause to obtain p A (=pV ¢) A (g V 1) A —r.

p (=pVaq) (—qVvr) -

\/\/

(—pVr)

: P

0

For comparison, you can also prove this using rules of inference such as Modus Ponens. That
allows you to derive ¢ from the first two lines (p and p — ¢ give ¢), and then derive r from
g and ¢ — r.

Example 2. Let’s look at another example. Now there are only two variables, and the four
clauses contain all possible combinations (so the formula is a contradiction) (z V y) A (—z V
y) A (zV —y) A (=2 V -y). You can easily see that any truth assignment to = and y falsifies
one clause.

(zVy) (mz Vy) (z vV -y) (mz vV —y)

Resolution proof system is very powerful in that given any formula in CNF form it can check

20



whether it is a contradiction. However, resolution is not very efficient. Although it is much
more efficient in practice than using truth tables (for example, the (z1 A (x1 — z2) A (z2 —
x3) A+ A (xy, = x,) A 2z, can be done by a resolution proof system in n steps, whereas
the truth table would have 2" lines), there are examples of problems on which resolution
proof system has to explore all possibilities, and so is similar to the truth table method in
efficiency. The most prominent such example is the PigeonHole Principle, which says that
it is impossible to put n + 1 element (pigeon) into n places (holes) without two elements
getting into the same place. You needed to use this principle, this kind of counting reasoning
to solve the last lecture puzzle.

The resolution is still the most popular method of programming automated proof systems
because if its clarity and simplicity. However, when working with or programming such a
system keep in mind that resolution “can’t count”.

At this point a natural question is: how can we use resolution to deal with general propo-
sitional formulas, that is, ones not in CNF form. Of course, we could create a truth table
and write a corresponding CNF formula, but if we have a truth table then we can just test
whether a formula is a contradiction by checking if all entries in the last column are Fs.
Another idea is to manipulate the formula using logic identities until it becomes a CNF.
This is possible, but unfortunately can result in a very large (size comparable to the truth
table) formula, especially when converting a DNF into a CNF (think of converting a formula
(x1 Ay1) V (22 Aya) ... (z, Ayp) into a CNF: you will end up with 2" clauses on n variables
each, one for every combination of Xs and Ys).

A different idea is to add new variables in such a way that the new formula is a contradiction
if and only if the original one was a contradiction. Here is one way of doing it.

1) Assign a new variable to every binary connector (A, V, —, <) in the formula (starting
from the outermost connector, operation to be done last). For example, if the original
formula is ((z1 — x2) V—((—21 <> x3) Vx4)) Ao, then assign variable y; to outermost
A connector,then the variable y, to the VV before x4 and so on (think of writing a parse
tree of the formula and assigning y; to the top, y» and (possibly) ys to its children,
etc).

2) Next, write the conditions describing the new variables: for example, if our yg was
assigned to <> in —x1 <> x3, then we need the condition (yg <+ (—x1 <> x3)) which says
that yg is true if and only if the expression (—x; <> z3) is true. The continue writing
similar expressions for other y;s, using other y; variables to denote subformulas (for
example, the top A denoted by y; gets (y1 <+ (y2 A —x2)). Finally, add clause (y1) to
the formula which will mean that the whole original formula is true.

3) We are almost done: our formula is a conjunction of small parts; most importantly,
each small part (y; <> (...)) only involves three variables (for example, y1, y2 and x9 in
definition of yy, or y2 <> (y3V —y4) for y3). Three variables give us a small enough truth

21



table (8 lines), that we can write a CNF for this small table with just 7 or less clauses,
each with at most 3 variables.. So the size of the new formula becomes approximately
the number of logical connectives (times a constant).

4) The resulting formula is a CNF, and although it has many more variables, it is a
contradiction if and only if the original formula was.

3.1 Complete set of connectives

From what we have done it is easy to see that any possible truth table (we will start saying
“boolean function” soon) can be represented by a formula written with just A,V and —.
Such set of connectives is called complete.

A stronger result tells us that even V is not necessary in this set (homework exercise). But
— is necessary, because every formula without — is true when all of its variables are set to
true. So contradiction cannot be described by such a formula, and any truth table with a 0
in the last column when all of its inputs are true cannot be represented by a formula using
only V and A.

We have seen that there are two connectives that allow us to construct formulas representing
all possible truth tables. Is there a single connective that can be used to construct formulas
with all possible truth tables? The answer is yes, and such connective is called NAND
(stands for “not-and”) in digital circuit design, or Sheffer’s stroke (written as |). It is defined
so p|q is false when both p and ¢ are true, and true otherwise.

You can see here that it has values exactly opposite of the values

i) ? ]5|q of p A ¢q, hence the name NAND. To show that it is complete, let
1101 us look at how to simulate — and A with it. Once we have both
ol1l1 = and A, we can rewrite any formula to an equivalent one which
ololi only uses | as a connective using ideas from the problem in your

homework assignment.

To show how to represent —p, note that the first row of the truth table has 0 for the value
of the Sheffer’s stoke, and the last row has a 1. So =p <= p|p. Similarly, p A ¢ <~
=(plg) <= (pl9)|(plq), since Sheffer’s stroke is the negation of A and we just showed how
to do —.

22



