
CS 2742 (Logic in Computer Science) – Winter 2014
Lecture 25

Antonina Kolokolova

March 26, 2014

8 Correctness of algorithms

Consider the following algorithm for finding an element in the array:

Max(A[1], . . . , A[n])
m =A[1]
for i = 2 to n

ifA[i] > m then
m = A[i]

return m

What does it mean to prove that this algorithm works correctly? For that, we need to specify
what are the starting conditions of the algorithm and what we expect it to output at the
end. These conditions are called preconditions and postconditions. Note that we can talk
about preconditions and postconditions for not just the whole algorithm but any piece of
code, for example, a precondition and postcondition of the for loop.

So which assumptions do we make about the input to the algorithm Max(A)? First we
are assuming that A is an array of integers, so comparisons such as A[i] > m make sense.
Second, since we start with our code with m = A[1], we are using the assumption that the
array has at least one element, that is, it is not empty. So the precondition for this algorithm
is: “A is a non-empty array of integers”. We use the variable n to denote |A|, to simplify
the presentation.

A postcondition for this program would state that starting with the precondition, this code
does the right thing, that is, it returns the maximal element in the array. What do we mean

69

by a “maximal element of the array”, though? Suppose you say that the postcondition is
“return m such that ∀i, 1 ≤ i ≤ n, A[i] ≤ m. Is this enough? Well, somebody can write
a piece of code that just sets m to be the largest integer representable on the system, then
this postcondition will be satisfy, however, this is clearly not the kind of answer we want to
get from a program searching for a maximal element in an array. The additional condition
needed here is to ensure that m is indeed an element of the array, in addition to being as
large as anything in A. So, to write it formally, we end up with a following postcondition:
“return m such that ∃j, 1 ≤ j ≤ n, A[j] = m and ∀i, 1 ≤ i ≤ n, A[i] ≤ m.” Now our
postcondition does state that the algorithm returns the maximal element of A.

It is possible to put conditions (pre/postconditons) between any two lines of code, and
then prove the correctness of the program by showing that for every line of code, if the
preconditions of this line of code are satisfied then so are postcondition. This works well for
statements such as “if... then...”, but for loops we need a bit more machinery.

8.1 Loop invariants

Intuitively, to prove that the loop executes correctly, we want to show that it is correct on
the first iteration, then on the second and so on until the last iteration.. And, moreover, we
want to show that the loop terminates. The idea here resembles induction (and in fact it is
induction that is used to prove the correctness of loops).

The predicate used to prove correctness of a loop is called a loop invariant. For each iteration
of the loop, if this predicate I(k) (where k stands for kth iteration) is true before the iteration,
the it is true after the iteration (on the changed values of the variables). Furthermore, the
predicate I(0) is true before the first iteration and loop terminates in finite number of steps
and after the last step the truth of loop invariant ensures the post-condition of the loop.

Let I(n) be a loop invariant, and call the condition which is checked at the start of wach
loop (such as i ≤ n in while i ≤ n) a guard condition G. Then the following theorem (due
to Hoare) formalizes the properties of the loop invariant.

Theorem 1 (Loop invariant theorem.). Consider a while loop with a guard condition G. Let
I(n) be the loop invariant predicate. If the following are true, the loop is correct with respect
to post- and pre-conditions.

1) Basic property: the pre-condition implies I(0)

2) Induction property: for all integers k ≥ 0, if guard and I(k) are true before the itera-
tion, then I(k + 1) is true after.

3) Eventual falsity of the guard: after a finite number of iterations, G becomes false.

70

4) Correctness of postconditions: if N is the first place where G is false, and I(N) is true,
then post-condition holds.

Example 1. Let us look at the loop invariant for the Max(A) algorithm. To make the
guard condition more interesting, consider the following modification of the algorithm:

Max(A[1], . . . , A[n])
m =A[1]
i = 1
while i ≤ n do

ifA[i] > m then
m = A[i]

end if
i = i + 1

end while

return m

Let the precondition of the loop be m = A[1] and i = 1 where the first element of A is A[1].
Let the postcondition of the loop be the same as the postcondition of the whole algorithm:
that m is an element of A and it is the largest element. Now, the loop invariant is: I(i) : m
is the largest element among the first i elements of A. The guard condition G is i ≤ n.

Now, we can prove the correctness of this loop by induction on i. First, note that since n is
a fixed integer and i starts smaller than n, and it is incremented by i at each step, at some
point i ≤ n will become false. This will always happen after n− 1 iterations.

Now, let us prove the loop invariant. First, I(1) is true because A[1] = m, so it is among the
first 1 elements of the array, and it is at least as large as A[1] for the same reason. Now, for
the induction hypothesis, suppose that m is the maximal element among A[1] . . . A[i]; let this
be I(i) (note that here we did not start with 0, changing the base case to a large number.
But as long as our base case follows from the loop precondition, and does not miss any steps,
it is OK). We want to show that after one more iteration I(i + 1) will hold. Consider two
cases: 1) A[i + 1] > m. In that case, A[i + 1] is greater than all preceding elements of A,
by transitivity of ≥ relation. Thus, setting m to A[i + 1] satisfies both conditions: it is an
element of A (its i+1’st element) and it is at least as large as all elements among A[1] to
A[i + 1]. Now, for the second case, suppose that A[i + 1] ≤ m. In this case, m does not
change. It is still in A by induction hypothesis: it is A[j] = m for some j ≤ i. It is greater
than or equal to all elements of A from A[1] to A[i + 1] because it is ∀j < i + 1, m ≥ A[j]
by induction hypothesis and m ≥ A[i + 1] because this is the case of the “if” that we are
considering.

Finally, after the last iteration m is still in the array and it is at least as large as anything

71

in the whole array. Therefore, it trivially satisfies the postcondition of being the largest
element in A.

8.2 Correctness of recursive algorithms

Many of you know the Binary Search algorithm for finding an element in a sorted array. The
inputs are an array A of, say, integers and an another integer x, and the output is either the
index of the array where that element is located (e.g, if for some i A[i] = x, then return i)
or an error code (e.g., 0). Because the input array is sorted, it is possible to find x in the
array (or check that it is not there) much faster then by checking every element in a way
similar to what we did with Max. The BinarySearch algorithm does it as follows: it splits
the array into two halves, and then checks if x is greater than the middle element. If so, it
is clear that if x is in the array then it must be in the right half; if not, in the left half.

In this section, we will analyze the Recursive Binary search algorithm; the iterative version
is left as an exercise. The program consists of two parts: MainBinSearch is a short program
making the first recursive call to RecBinSearch, which is the part where all the work is done.

MainBinSearch(A, x)
return RecBinSearch(A, 1, |A|, x)

Let’s leave the precondition and postcondition for MainBinSearch as an exercise, and look
at the recursive part of the program.

The following code does the main part of the work.

RecBinSearch(A, f, l, x)
iff = l then
if A[f] = x then

return f
else

return 0
else
m = (f + l)/2
if A[m] ≥ x then

return RecBinSearch(A, f,m, x)
else

return RecBinSearch(A,m + 1, l, x)
end if

end if

72

RecBinSearch:
Precondition: 1 ≤ f ≤ l ≤ |A| and A[f..l] is sorted.
Postcondition: return t, f ≤ t ≤ l, such that A[t] = x, or, if x is not in the array between f
and l, return t = 0.

It is easy to see that the precondition of RecBinSearch follows from the precondition for
MainBinSearch for 1 = f and l = |A|. Also, the postcondition of MainBinSearch follows
from the postcondition of RecBinSearch since the statements that x is somewhere between
the first and the last element of the array and that it is somewhere in the array are equivalent.

It remains to prove correctness of RecBinSearch. The proof of correctness of RecBinSearch
will proceed by strong induction on length of the array, l − f .

P (k) : if 1 ≤ f ≤ l ≤ |A| and |A[f..l] = k and A[f..l] is sorted then the call terminates and
returns t, f ≤ t ≤ l, such that A[t] = x, or, if x is not in the array between f and l, return
t = 0.

Base Case: k = 1. Then l = f so there is just one element in A[f..l]. RecBinSearch returns
f if this element is x and 0 otherwise, and makes no further recursive calls.

Induction. Step. Strong induction:
Assume for all 1 ≤ i < k P (i) holds.
Then the algorithm makes one recursive call to RecBinSearch, with different parameters
depending whether A[m] ≥ x and A[m] < x. The input to the algorithm is just a part of
the array between f and l. As we said before, if x > A[m] then it must be between A[m+ 1]
and A[l]; otherwise, it is in the other half. By induction hypothesis, recursive call will return
us the correct answer which we just return. Here we are using strong induction because the
sizes of the new arrays are half of the size of the old ones, and besides, due to rounding/odd
length of the subarray it might be the case that the length of both halves is the same.

The last remaining part to prove is that the algorithm will terminate. Note that the algorithm
halves the length of the array at every iteration, so eventually the size of the array will
approach 1. It cannot become a 0 because the two halves always differ at most by 1 element,
and so if one of them is a 0, then another must be 1, but in this case the array we are
splitting would be already of length 1.

73

