
CS 2742 (Logic in Computer Science) – Winter 2014
Lecture 18

Antonina Kolokolova

March 7, 2014

5.1 Cardinalities and diagonalization

It is easy to compare sizes (in set theory terminology, cardinalities) when sets are finite:
whichever set has more elements, that set is larger. In a way, what we are doing in that com-
parison is creating a correspondence between the elements of the sets by matching elements
of one set to elements of another one-by-one. If this correspondence is both one-to-one and
onto, then our sets are of equal size. For example, to match {10, 20, 30} with {a, b, c} we can
define a bijection f(x) by f(10) = a, f(20) = b, f(30) = c. If sets have different sizes, then
either f cannot be one-to-one (if the second set is smaller) or it is not onto (if the second
set is large).

This is the idea behind the comparison of infinite sets. We declare two sets to have the same
size (cardinality), if there is bijection (that is, a function which is both one-to-one and onto)
from one set to the other. To extend this definition, we say that a (possibly infinite) set
A has cardinality |A| ≤ |B| if there is a one-to-one function from A to B. Note that this
gives us another way of proving that two sets have equal cardinality: give two one-to-one
functions, one from A to B and another from B to A. Rephrasing pigeonhole principle: for
sets such that |A| < |B| there is no one-to-one function from B to A (no onto function from
A to B).

But this definition gives us some strange consequences. With infinite sets, it is possible that
a proper subset has the same cardinality as the whole set (although it is not possible for a
subset to be larger than the whole: identity function gives the proof). Example: N ⊂ Q,
Even ⊂ N, N ⊂ N× N.

Definition 1. We call sets that have the same cardinality as N countable sets. The sets that
have larger cardinality such as R, we call uncountable.

Example 1. The set of positive rational numbers is countable.

43

Note that we already know an injective function from N to Q+: it is an identity function.
So the interesting part is to give an injective function from Q+ to N.

For that, look at the following table:
1/1 1/2 1/3 1/4 1/5 ...
2/1 2/2 2/3 2/4 2/5 ...
3/1 3/2 3/3 3/4 3/5 ...
4/1 4/2 4/3 4/4 4/5 ...
5/1 5/2 5/3 5/4 5/5 ...
...

...
...

...
...

...

Now, start counting the elements of the table as follows:

1: 1/1, 2: 1/2. 3: 2/1, 4: 1/3, 5: 2/2, 6: 3/1, 7: 1/4 and so on (that is, list all elements with
the sum of numerator and denominator equal 2, then all with sum =3 and so on). Note that
every rational number is represented in this table, multiple times, too (for example, 2/4 and
1/2). So we just constructed a one-to-one function from a set larger than Q+ to the set of
natural numbers. Therefore, the cardinality of Q+ is at most the cardinality of N. Since it
is also at least |N|, we conclude that |Q+| = |N|.

This kind of argument is often used to show that a certain set is countable.

5.2 Diagonalization

At this point you may ask – is it true, then, that all infinite sets have the same size? What
about a powerset of natural numbers 2N? In this case, we can show that the resulting set is
actually strictly larger than N. For this, we will use a technique called diagonalization, due
to Cantor, who used it to show that the set of real numbers is larger than the set of natural
numbers.

The idea of the proof is as follows. The proof proceeds by contradiction. Assume, for the
sake of contradiction, that your set in question (i.e., 2N or R) is countable, that is, there
is function from the elements of this set to natural numbers. Make a table in which rows
correspond to elements being enumerated in the order of that assumed enumeration (e.g,
rows are real numbers represented as strings of digits or rows are (infinite) strings encoding
the powerset of natural numbers). Now, construct a new element which belongs to the set
and which is different from any row in the table.

For example, here is how the table looks for proving that the powerset of natural numbers
is uncountable. Represent each subset S of natural numbers by an infinite string s with 0 in
bit i when number i is not in the set S and 1 in bit i if i ∈ S. Now, list these strings as rows
of the table, according to that alleged enumeration. The table would look similar to this:

44

1 0 0 1 1 0 1 1 0 1
2 1 1 1 1 1 0 0 1 1
3 1 0 0 0 0 1 1 1 1
4 1 1 0 1 1 0 0 1 1
5 0 0 1 1 1 1 1 0 0

...
...

...
...

...
...

...
...

...
...

- 1 0 1 0 0 1 1 0 1

Here, inside of the table is the alleged listing of all possible subsets of natural numbers,
represented as strings. The string under the table differs from the first line in the table in
the first bit, from the second line of the table in the second bit and so on. Since this string
looks like the diagonal of the table inverted, the method is called diagonalization.

How do we show that this diagonal string that we constructed is not in the listing? Suppose
it is, then it is in the table as a row number k for some k. But this is not possible, because
our diagonal string differs from the string in row k in its kth bit. Therefore, this string is
not in the enumeration. Since this works for any possible enumeration of subsets of natural
numbers (just construct a corresponding string for each enumeration), we conclude that 2N is
not countable. However, it has the same size as the set of all real numbers (exercise: see how
you can prove that). It makes sense to ask is there a set with cardinality strictly between
the two, that is, some set A such that |N| < |A| < |R|. And the answer is... not only we
don’t know, but either way would not contradict the axioms of mathematics.

This is called the Continuum Hypothesis. It says that there is no set whose size is strictly
between that of natural numbers and that of real numbers (that is, between N and 2N.
This hypothesis is not provable (or disprovable) from the current axioms of mathematics (of
Zermelo-Fraenkel set theory ZFC).

Another interesting application of this method is to show that there are problems that
cannot be solved by any (say, Java) program. Think about the simplest kind of problems,
classification of inputs – or even simpler, determining whether a given input is a number
belonging to a specified set. For example, such membership problem can be determining,
given a natural number, whether that number is prime or whether it is a square of another
number. As you are already noticing from the definition of the problem, here a ”problem”
(often called ”language” in this setting) corresponds exactly to a subset of natural numbers
discussed above. So as before the rows of our table will encode subsets of natural numbers,
with each column corresponding to a number that can be given to a program as an input.

Now, we want to enumerate the rows of the table by Java programs, where a Java program
associated with a row should correctly compute all values in this row (for example, if the
row corresponds to 1s for all prime numbers, the Java program should correctly determine
whether a given number is prime). Note that any Java program can be written as a finite
binary string, and we already said that finite binary strings (with 1 in front) form a bijec-

45

tion with natural numbers. In particular, there are not more Java programs than natural
numbers. Now, applying diagonalization exactly the same way as we did above, we obtain
a language that differs from the language computed by ith Java program on the ith number.
Therefore, this language is not computable.

At this point you may ask if there is a specific, concrete example of a language not computed
by any Java program. Indeed there is, and to construct it, we will use intuition akin Russell’s
paradox A = {x | x /∈ A}. This particular example is called the Halting Problem, and it
corresponds to a very natural task of checking whether a given program goes into an infinite
loop on a given input or eventually stops (halts). More precisely, let CheckHalt be an
algorithm such that CheckHalt(M,x) prints “halts” if M terminates on input x, and “loops”
if M does not terminate. Let Diag(X) = ¬CheckHalt(X,X). Such a Diag(X) gives a
paradox (just think what Diag would do if presented with its own code as an input).

46

