CS 2742 (Logic in Computer Science) – Winter 2014 Lecture 16

Antonina Kolokolova

March 5, 2014

5 Functions

Recall that a relation on n variables $R(x_1, \ldots, x_n)$ is a subset of the Cartesian product of domains of x_1, \ldots, x_n . A function is a special kind of relation that has exactly value of x_n for any tuple of values of x_1, \ldots, x_{n-1} . Usually we write $f(x_1, \ldots, x_{n-1}) = x_n$ to mean that R is a function and $R(x_1, \ldots, x_{n-1}, x_n)$ holds.

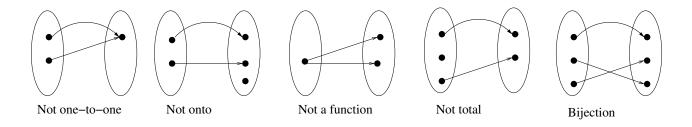
So just as we defined numbers using sets, we now defined functins and relations on numbers (and not just numbers: the variables can be anything).

Example 1. f(x) = Mother(x) is a function, so is $f(x) = x^2$, so is f(x) = x/y.

Definition 1. We often write functions as $f: X \to Y$ (read as "function f from X to Y") meaning that the tuples of variables of f come from X, and that the output value of f comes from Y. We call X the domain of f, and $\{y|x \in X \land f(x) = y\}$ a range of f, or image of X under f. A set Y is called codomain; the range of f is a subset of the codomain.

Domain and codomain can be different sets: e.g., function counting the number of 0's in a binary string $f: \{0,1\}^* \to \mathbb{N}$.

- Identity function: f(x) = x. Can be defined for any domain=codomain.
- Constant function: f(x) = a, where a does not change when x does. For example, $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = 0.
- Arithmetic functions: logarithmic function $f(x,y) = \log_x y$, exponential $f(x,y) = x^y$, addition, multiplication, division, subtraction, etc.



• Boolean functions: a function from strings of 0s and 1s of length n (denoted $\{0,1\}^n$) to $\{0,1\}$.

A function is defined by a formula if there is a formula which is true exactly on tuples of inputs + output of the function. E.g., a function $F: \mathbb{N} \to \mathbb{N}$ f(x) = x+1 can be defined by $y > x \land \forall z \ (z \le x \lor z \ge y)$. Sometimes a function is not well defined on a certain domain: e.g., \sqrt{x} is not well-defined when both the domain and the range are natural numbers.

Definition 2. Let $f: X \to Y$ be a function. Then f is one-to-one (or injective) iff $\forall x, y \in X$ $(f(x) = f(y) \to x = y)$. A function is onto (or surjective) if $\forall y \in Y \exists x \in X (f(x) = y)$. A function is bijective if it is both one-to-one and onto.

To prove that two sets are the same size, give a bijection (or give two functions, one a surjection and one an injection).

To prove that a function is one-to-one show that $f(x) = f(y) \to x = y$.

Example 2. For example, f(x) = 4x + 1, f(x) = f(y) so 4x+1=4y+1 so x = y. On the other hand, $f: \mathbb{Z} \to \mathbb{Z}$, $f(n) = n^2$ is not one-to-one: as a counterexample take x = -1 and y = 1. Then $x \neq y$, but $x^2 = y^2$.

To prove that a function is onto, show that every element has a *preeimage*. To prove that it is not onto, show that there is an element in the codomain such that nothing maps into it.

Example 3. Consider again f(x) = 4x + 1 over real numbers. There it is onto. Now consider it over integers. It is not onto integers.