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5.4 Building new sets: power set, Cartesian product, relations.

A power set of a set A, denoted 2A, is a set of all subsets of A. For example, if A = {1, 2, 3}
then 2A = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}.

Let |A| denote the number of elements of A (also called cardinality, especially when talking
about infinite sets.) The size of the power set, as notation suggests, is 2|A|.

Theorem 1. Let A be a finite set. Then the cardinality of 2A is 2|A|.

Proof. Suppose A has n elements. Now, every subset S of A can be represented by a binary
string of length n, which would have a 1 in the positions corresponding to an element in S,
and a 0 in places corresponding to elements not in S. For example, if A = {1, 2, 3} as above,
then S{1, 3} is represented by a string 101, and ∅ is represented by a string 000. Now, the
number of binary strings of length n is 2n. Therefore, the number of possible subsets of A
(and thus the elements of 2A) is also 2n.

What if A is infinite? Still the size of the powerset (called cardinality in this context) will be
larger. In one of the upcoming lectures we will talk about a technique called Diagonalization,
due to Cantor, that can be used to show this.

Another useful notation is the Cartesian product, which will allow us to talk about ordered
tuples of elements (pairs, triples, etc). A Cartesian product of sets A1 . . . An, denoted A1 ×
· · ·×An is a set of ordered tuples < a1, a2, ...an > such that a1 ∈ A1∧a2 ∈ A2∧· · ·∧an ∈ An.
Note that an ordered tuple (a, b) is not the same as a set {a, b}: here the order of elements
matters, so the tuple < 1, 2 > is not the same as the tuple < 2, 1 >. For two sets, their
Cartesian product is A×B = {(a, b) | a ∈ A and b ∈ B}.

32



For example, a Cartesian product of sets {3, 4} and {1, 2, 3} is the set of pairs {(3, 1), (3, 2),
(3, 3), (4, 1), (4, 2), (4, 3)}. Note that the pair (4, 3) is in the set, but the pair (3, 4) is not,
because 4 is not an element of {1, 2, 3}.

Definition 1. A relation on n variables R(x1, . . . , xn) is a subset of the Cartesian product
of domains of x1, . . . , xn.

You often hear an expression ”relational databases”. Indeed, a standard way to describe a
database is as a set of relations, where each parameter corresponds to a field in a database,
and each tuple (element) to an item in the database. For example, a student database could
have a relation StudentInfo(name, number, address) which could be a subset of Strings×
N × Strings. That is, every item in this relation will consist of three elements, denoting
the name, student number and address of a specific student. A database usually contains
several different relations.

In the next topic, we will see how propositional logic can be extended to deal with relations,
and to ask logical queries about them.

6 Predicate logic

Sometimes we encounter sentences that only have a truth value depending on some param-
eter. For example, Even(x) which states that the number x is even can be true or false
depending on the actual value of x. That is, Even(5) is false, and Even(10) is true.

It is convenient to think of predicates as propositions with parameters. Here, parameters
can be numbers, items, etc and there can be infinitely many possibilities for a parameter
value. For example, x2 > x is a predicate with an argument x, where we think of x as a
number. Another predicate Parent(x, y) could state that x is a parent of y. Here, it makes
sense to think of x and y as people, or at least living creatures. Truth values of a predicate
are defined for a given assignment of variables. For example, if x = 2, then x2 > x is true,
and if x = 0.5, then x2 > x is false. We call a set of possible objects from which the values
of a predicate can come from a domain of a predicate.

So what is the relation between a predicate, for example Parent(x, y), and a relation Parent?
A predicate is true iff the corresponding tuple of values is in the relation. For example,
Parent(John,Mary) is true if John is a parent of Mary, and the pair (John, Mary) is in the
relation Parent. Usually we will use the notation P (x, y, z) to mean a predicate, and just
P to denote a set (relation); however sometimes I will abuse the notation and mix up these
two concepts (especially when talking about databases).
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6.1 Quantifiers

Without fixing the values of arguments of a predicate it is not possible to say if the predicate
is true or false. That is, unless we want to say that the predicate is false for all possible values
of its arguments (in the domain of this predicate). Here, we need to pay careful attention to
what we mean by all possible values: x2 ≥ x is true for and it is false for some rational and
real numbers such as 0.5.

Quantifiers are the notational device that allows us to talk about all possible values of
arguments and make sentences with truth values out of predicates.

Definition 2. A formula ∀x A(x), where A(x) is a formula containing predicates, is true
(on the domain of predicates) if is is true on every value of x from the domain. Here, ∀ is
called a universal quantifier, usually pronounced as “for all ...”.

For example, ∀x x2 ≥ x states that for every element from the domain the square of that
element is greater than the element itself. This formula now has a truth value, provided we
know the domain from which x comes from. If the domain is Z, then the formula is true, and
if the domain is Q, then it is false. Often the domain is written explicitly: ∀x ∈ Z x2 ≥ x,
which is a shortcut for ∀x (x ∈ Z → x2 ≥ x).

When we want to say that something is not true everywhere, all we need to do is to give a
counterexample. E.g., to show that for Q it is not true that ∀x x2 ≥ x it is enough to give
one value on which x2 ≥ x does not hold such as x = 0.5. We denote this with the second
type of quantifiers, an existential quantifier.

Definition 3. A formula ∃x A(x), where A(x) is a formula containing predicates, is true
(on the domain of predicates) if is is true on some value of x from the domain. Here, ∃ is
called a existential quantifier, usually pronounced as “exists ...”.

When doing boolean operations on formulas containing quantifiers, always remember that
universal and existential quantifiers are opposites of each other. So,

¬(∀x A(x)) ⇐⇒ ∃x ¬A(x) ¬(∃x A(x)) ⇐⇒ ∀x ¬A(x)

Now that we have this notation we can define what kinds of formulas we can construct using
this language, the first-order formulas.

Definition 4. A predicate is a first-order formula (possibly with free variables). A ∧,∨,¬
of a first-order formula is a first-order formula. If a formula A(x) has a free variable (that
is, a variable x that occurs in some predicates but does not occur under quantifiers such as
∀x or ∃x), then ∀x A(x) and ∃x A(x) are also first-order formulas.

Note that this definition is very similar to the definition of propositional formulas except
here there are predicates instead of propositions and there are quantifiers.
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6.2 English and quantifiers

In English, the closest word to the universal quantifier is “all” or “every”. The closest word
to the existential quantifier is “some” and “exists”. But there is one word that can be used
as either a universal or an existential quantifier.That is the word any. Often we take it to
mean a universal quantifier, as in “take any number greater than 1...” (that is, every number
greater than 1 would work). But compare the following two sentences:

“I will be happy if I do well in every class”.
“I will be happy if I do well in any class”.

Here, the word “any” takes the meaning of an existential quantifier: that is, I’ll be happy
if there exists some class in which I do well. Please keep this in mind when doing the
translations.

Puzzle 8. The first formulation of the famous liar’s paradox, done by a Cretan philosopher
Epimenides, stated “All Cretans are liars”. Is this a paradox?
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