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Figure 1: Types of gates in a digital circuit.
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Boolean circuits:

• Boolean circuits is a generalization of Boolean formulas in which we allow to reuse a part of a formula
rather than writing it twice. To make a transition write Boolean formulas as trees and reuse parts
that are repeating. The connectives become circuit gates.

It is possible to have more than 2 inputs into an AND or OR circuit, but not a NOT circuit.

It is possible to construct arithmetic circuits (e.g., for doing addition on numbers) by using a Boolean
circuit to compute each bit of the answer separately.

Predicate logic:

• A predicate is like a propositional variable, but with free variables, and can be true or false depending
on the value of these free variables. A domain of a predicate is a set from which the free variables
can take their values (e.g., the domain of Even(n) can be integers).

• Quantifiers For a predicate P (x), a quantified statement “for all” (“every”, “all”) ∀xP (x) is true iff
P (x) is true for every value of x from the domain (also called universe); here, ∀ is called a universal
quantifier. A statement “exists” (“some”, “a”) ∃xP (x) is true whenever P (x) is true for at least one
element x in the universe; ∃ is an existential quantifier. The word “any” means sometimes ∃ and
sometimes ∀. A domain (universe) of a quantifier, sometimes written as ∃x ∈ D and ∀x ∈ D is the
set of values from which the possible choices for x are made. If the domain of a quantifier is empty,
then if the quantifier is universal then the formula is true, and if quantifier is existential, false. A
scope of a quantifier is a part of the formula (akin to a piece of code) on which the variable under
that quantifier can be used (after the quantifier symbol/inside the parentheses/until there is another
quantifier over a variable with the same name). A variable is bound if it is under a some quantifier
symbol, otherwise it is free.

• First-order formula A predicate is a first-order formula (possibly with free variables). A ∧,∨,¬ of
first-order formulas is a first-order formula. If a formula A(x) has a free variable (that is, a variable x
that occurs in some predicates but does not occur under quantifiers such as ∀x or ∃x), then ∀x A(x)
and ∃x A(x) are also first-order formulas.

• Negating quantifiers. Remember that ¬∀xP (x) ⇐⇒ ∃x¬P (x) and ¬∃xP (x) ⇐⇒ ∀x¬P (x).

• Database queries A query in a relational database is often represented as a first-order formula, where
predicates correspond to the relations occurring in database (that is, a predicate is true on a tuple
of values of variables if the corresponding relation contains that tuple). A query “returns” a set of
values that satisfy the formula describing the query; a Boolean query, with no free variables, returns
true or false. For example, a relation StudentInfo(x, y) in a university database contains, say, all
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pairs x, y such that x is a student’s name and y is the student number of student with the name x.
A corresponding predicate StudentInfo(x, y) will be true on all pairs x, y that are in the database.
A query ∃xStudentInfo(x, y) returns all valid student numbers. A query ∃x∃yStudentInfo(x, y),
saying that there is at least one registered student, returns true if there is some student who is
registered and false otherwise.

• Reasoning in predicate logic The rule of universal instantiation says that if some property is true of
everything in the domain, then it is true for any particular object in the domain. A combination of
this rule with modus ponens such as what is used in the “all men are mortal, Socrates is a man ∴
Socrates is mortal” is called universal modus ponens.

• Normal forms In a first-order formula, it is possible to rename variables under quantifiers so that they
all have different names. Then, after pushing negations into the formulas under the quantifiers, the
quantifier symbols can be moved to the front of a formula (making their scope the whole formula).

• Formulas with finite domains If the domain of a formula is finite, it is possible to check its truth value
using Resolution method. For that, the formula is converted into a propositional formula (grounding)
by changing each ∀x quantifier with a ∧ of the formula on all possible values of x; an ∃ quantifier
becomes a ∨. Then terms of the form P (value) (e.g., Even(5)) are treated as propositional variables,
and resolution can be used as in the propositional case.

• Limitations of first-order logic There are concepts that are not expressible by first-order formulas,
for example, transitivity (“is there a flight from A to B with arbitrary many legs?” cannot be a
database query described by a first-order formula).

• Resolution for predicate logic Given a first-order formula with only universal quantifiers (and with
different named variables under different quantifiers), the resolution rule (C ∨P (X̄))∨ (D ∨¬P (X̄))
can be applied to obtain (C ∨ D) as before. Note, though, that not only the predicate on which
resolution is done is the same in both clauses (e.g., you cannot resolve P () with ¬Q()), but also the
parameters X have to be the same in both cases. The goal of the resolution procedure is, just like in
the propositional case, to derive an empty clause(i.e., by resolving a clause containing just a variable
with a clause containing just its negation. )

• Skolemization When starting with a first-order formula with both universal and existential quantifiers,
convert it into a formula with only universal ones by, for every existentially quantified variable, replac-
ing its every occurrence by a function of preceding universally quantified variables (different for dif-
ferent variables); for example, ∀x∃y∀z∀u∃vA(x, y, z, u, v) becomes ∀x∀z∀uA(x, f(x), z, u, g(x, z, u)),
where f and g are distinct new function symbols.

• Unification is a procedure allowing to match parameters in different occurrences of a predicate (to
make them the same so that the resolution rule can be applied). A variable can be substituted by
anything other than a function of the same variable (i.e., a constant, a term, or another variable);
a substitution should replace all occurrences of a variable whether directly in predicates or inside a
term. For example, Q(x, f(x), 5) and ¬Q(3, y, z) can be unified via substitutions x/3, then y/f(3)
then z/5, giving (3, f(3), 5) as parameters to both occurrences. This substitution is called the unifier.
Usually, the most general unifier is sought: that is, if some substitution can be avoided, then don’t
do it.

Set Theory
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• A set is a well-defined collection of objects, called elements of a set. An object x belongs to set A is
denoted x ∈ A (said “x in A” or “x is a member of A”). Usually for every set we consider a bigger
“universe” from which its elements come (for example, for a set of even numbers, the universe can
be all natural numbers). A set is often constructed using set-builder notation: A = {x inU |P (x)}
where U is a universe , and P (x) is a predicate statement; this is read as “x in U such that P (x)”
and denotes all elements in the universe for which P (x) holds. Alternatively, for a small set, one can
list its elements in curly brackets (e.g., A = {1, 2, 3, 4}.)

• A set A is a subset of set B, denotedA ⊆ B, if ∀x(x ∈ A → x ∈ B). It is a proper subset if ∃x ∈ B
such that x /∈ A. Otherwise, if ∀x(x ∈ A↔ x ∈ B) two sets are equal.

• Special sets are: empty set ∅, defined as ∀x(x /∈ ∅). Universal set U : all potential elements under
consideration at given moment. A power set for a given set A, denoted 2A is the set of all subsets
of A. If A has n elements, then 2A has 2n elements (since for every element there are two choices,
either it is in, or not). A power set is always larger than the original set, even in the infinite case
(use diagonalization to prove that).

• Basic set operations are a complement Ā, denoting all elements in the universe that are not in
A, then union A ∪ B= {x|x ∈ A or x ∈ B}, and intersection A ∩ B= {x|x ∈ A and x ∈ B}
and set difference A − B = {x|x ∈ A and x /∈ B}. Lastly, the Cartesian product of two sets
A×B = {(a, b)|a ∈ A and b ∈ B}.

• To prove that A ⊆ B, show that if you take an arbitrary element of A then it is always an element
of B. To prove that two sets are equal, show both A ⊆ B and B ⊆ A. You can also use set-theoretic
identities.

• A cardinality of a set is the number of elements in it. Two sets have the same cardinality if there is
a bijection between them. If the cardinality of a set is the same as the cardinality of N, the set is
called countable. If it is greater, then uncountable.

• Boolean algebra: A set B with three operations +, · and ,̄ and special elements 0 and 1 such that
0 6= 1, and axioms of identity, complement, associativity and distributivity. Logic is a boolean algebra
with F being 0, T being 1, and ,̄+, · being ¬,∨,∧,respectively. Set theory is a boolean algebra with ∅
for 0, U for 1, and ,̄∪,∩ for ,̄+, ·. Boolean algebra is sound and complete: anything true is provable
(completeness) and anything provable is true (soundness).

To see that it is sound, use the fact that the axioms are true in the language of first-order logic or
set theory, and the rules of inference are x = x, x = y → y = x and x = y ∧ y = z → y = z, which
preserve soundness. For completeness, show that every formula in Boolean algebra can be simplified
and then extended to its “normal form” DNF obtained from its truth table.

Relations and Functions

1. A function f: A→ B is a special type of relation R ⊆ A×B such that for any x ∈ A, y, z ∈ B,
if f(x) = y and f(x) = z then y = z. If A = A1 × . . . × Ak, we say that the function is k-ary.
In words, a k + 1-ary relation is a k-ary function if for any possible value of the first k variables
there is at most one value of the last variable. We also say “f is a mapping from A to B” for a
function f , and call f(x) = y “f maps x to y”.

– A function is total if there is a value f(x) ∈ B for every x; otherwise the function is partial.
For example, f : R → R, f(x) = x2 is a total function, but f(x) = 1

x is partial, because it
is not defined when x = 0.
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Table 1: Laws of boolean algebras, logic and sets
Name Logic law Set theory law Boolean algebra law

Double Negation ¬¬p ⇐⇒ p A = A x = x

DeMorgan’s laws ¬(p ∨ q) ⇐⇒ (¬p ∧ ¬q) A ∪B = A ∩B x + y = x · y
¬(p ∧ q) ⇐⇒ (¬p ∨ ¬q) A ∩B = A ∪B x · y = x + y

Associativity (p ∨ q) ∨ r ⇐⇒ p ∨ (q ∨ r) (A ∪B) ∪ C = A ∪ (B ∪ C) (x + y) + z = x + (y + z)
(p ∧ q) ∧ r ⇐⇒ p ∧ (q ∧ r) (A ∩B) ∩ C = A ∩ (B ∩ C) (x · y) · z = x · (y · z)

Commutativity p ∨ q ⇐⇒ q ∨ p A ∪B = B ∪A x + y = y + x
p ∧ q ⇐⇒ q ∧ p A ∩B = B ∩A x · y = y · x

Distributivity p ∧ (q ∨ r) ⇐⇒ (p ∧ q) ∨ (p ∧ r) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) x · (y + z) = (x · y) + (x · z)
p ∨ (q ∧ r) ⇐⇒ (p ∨ q) ∧ (p ∨ r) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) x + (y · z) = (x + y) · (x + z)

Idempotence (p ∨ p) ⇐⇒ p ⇐⇒ (p ∧ p) A ∪A = A = A ∩A x + x = x = x · x
Identity p ∨ F ⇐⇒ p ⇐⇒ p ∧ T A ∪ ∅ = A = A ∩ U x + 0 = x = x · 1
Inverse p ∨ ¬p ⇐⇒ T A ∪ Ā = U x + x̄ = 1

p ∧ ¬p ⇐⇒ F A ∩ Ā = ∅ x · x̄ = 0

Domination p ∨ T ⇐⇒ T A ∪ U = U x + 1 = 1
p ∧ F ⇐⇒ F A ∩ ∅ = ∅ x · 0 = 0

Not total BijectionNot one−to−one Not a functionNot onto
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– If a function is f: A→ B, then A is called the domain of the function, and B a codomain.
The set of {y ∈ B | ∃x ∈ A, f(x) = y} is called the range of f . For f(x) = y, y is called the
image of x and x a preimage of y.

– A composition of f: A→ B and g: B → C is a function g ◦ f: A→ C such that if f(x) = y
and g(y) = z, then (g ◦ f)(x) = g(f(x)) = z.

– A function g: B → A is an inverse of f (denoted f−1) if (g ◦ f)(x) = x for all x ∈ A.

– A total function f is one-to-one if for every y ∈ B, there is at most one x ∈ A such that
f(x) = y. For example, the function f(x) = x2 is not one-to-one when f: Z → N (because
both −x and x are mapped to the same x2), but is one-to-one when f: N→ N.

– A total function f : A → B is onto if the range of f is all of B, that is, for every element
in B there is some element in A that maps to it. For example, f(x) = 2x is onto when
f: N→ Even, where Even is the set of all even numbers, but not onto N.

– A total function that is both one-to-one and onto is called a bijection.

– A function f(x) = x is called the identity function. It has the property that f−1(x) = f(x).
A function f(x) = c for some fixed constant c (e.g., f(x) = 3) is called a constant function.

Foundations of mathematics

• Zermelo-Fraenkel set theory The foundations of mathematics, that is, the axioms from which all the
mathematics is derived are several axioms about sets called Zermelo-Fraenkel set theory (together
with the axiom of choice abbreviated as ZFC). For example, numbers can be defined from sets as
follows: 0 is ∅. 1 is {∅}. 2 is {∅, {∅}} and in general n is n−1∪{n−1}. ZFC is carefully constructed
to explicitly disallow Russell’s paradox “if a barber shaves everybody who does not shave himself,
who shaves the barber?” (in set theoretic terms, if X is a set of sets A such as A /∈ A, is X ∈ X?
) This kind of reasoning is used to prove that halting problem of checking whether a given piece of
code contains an infinite loop is not solvable (an alternative way to prove this is diagonalization).

• A theory is a set of statements, or, in a different view, a set of axioms from which a set of statements
can be proven. Here, axioms are statements that are assumed in the theory (for example, ∀x, y x+y =
y + x).

• A model of a theory is a description of a possible world, that is, a set of objects and interpretations of
functions and relations, in which axioms are true. There can be several models for the same theory.
For example, Euclidean geometry has as a model the geometry on a plane. Without the 5th postulate
about parallel lines, there are other possible models such as geometry on a sphere (where parallel
lines intersect).

• A theory is called complete if it contains (proves) every true (in every model) statement about the
objects that can be described in its language (e.g., sets or natural numbers) and sound if every
statement provable from the axioms is indeed true.
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