
MACM 101, D2, 12/01/2007. Lecture 3.

Puzzle of the day:
On computers which have 32-bit architecture a memory address is stored as a 32-bit

binary number. How many memory addresses can be referenced on such computers, assuming
that the memory is in the units of one byte (8 bits)?

Solution: The number of possible 32-bit binary strings is 232, because in each of 32 bits
either 0 or 1 can go, so the number is 2 ∗ 2 ∗ · · · ∗ 2︸ ︷︷ ︸

32

. Now, one kilobyte is 1024 = 210 bytes,

one megabyte is 1024 = 210 kilobytes, and one gigabyte is 210 megabytes, respectively (in
computer science, a “round number” for 1000 is 1024, since 1024 is a power of 2). Now,
232 = 210 ∗ 210 ∗ 210 ∗ 4 = 4Gb of memory.

————————————————————————

Combinations with repetition.

Definition 1. An alphabet is a finite set of symbols, often called “letters”. A (finite) string
is a (finite) sequence of letters of alphabet. Finite strings are also called “words”.

How many 5-letter words (not necessarily existing words, just sequences of letters) out of
26 English letters? 265, since there are 26 possibilities for the first letter, times 26 possibilities
for the second (the letters can repeat), and so on.

Formula: So the number of permutations with repetition of k letters over n-ary alphabet
is nk.

How many combinations of letters with repetition?

Example 1. Suppose we want to express a number n as a sum of k non-negative numbers
(0 allowed). How many such sums are there?

For example, for n = 7, k = 4, 7 = 7 + 0 + 0 + 0, 6 + 1 + 0 + 0, 5 + 1 + 1 + 0, 5 + 2 + 0 +
0, 4+1+1+1, 4+2+1+0, 4+3+0+0, 3+2+1+1, 3+2+2+0, 3+3+1+0, 2+2+2+1.
The total is 11 possibilities.

Solution: Express n in unary, and put “dividers” between summands. In this case, there
are 3 dividers dividing 7 1s in 4 groups. 1111—111——.

Assume for now that order matters, that is, 3 + 3 + 1 + 0 and 0 + 3 + 1 + 3 are different
(later we will divide by 4! to account for this). Then the number of possibilities is the number
of ways to put k − 1 = 3 dividers in n + k − 1 slots (choosing which slots are dividers, the
rest are 1s).

Formula: The number of combinations with repetition of k elements out of n is equal to
the number of ways to put dividers between elements of different kinds (or, alternatively, to
put n elements in n+k−1 slots, leaving remaining slots for the dividers). There are k kinds
of elements, and n elements total, so the formula is(

n + k − 1

k − 1

)
=

(
n + k − 1

n

)
In the book, the number of kinds of objects which we call k is n, and the number of

objects we take which we call n is r.

1

In the example, we also ignore the order of elements, so for the case of splitting a sum
the formula is (n+k−1)!

(k−1)!n!k!
.

It is definitely possible for k > n: choosing more objects than there are kinds.

Example 2. Suppose 40 students of MACM 101 go to Blenz to get coffee. Each of them gets
one of the following: 1) coffee(c), 2) tea(t), 3) latte(l) 4) cappucino(p) 5) mocca(m). How
many possible orders can there be, if they are ordering all drinks at the same time together?

Solution: Look at the list of drinks, ordered in alphabetical order and with dividers between
different kinds. That is, an order is the string of the form

cc . . . ccc|ll . . . lll|mmm . . . mm|pp . . . ppp|ttt . . . tt

There are 40 drinks and 5-1=4 dividers. In this case, all drinks are different, so we don’t
ignore the order of the groups. Applying the formula above, get

(
40+5−1

4

)
possible orders.

Example 3. Number of solutions of x1 + x2 + . . . xn = r is
(

n+r−1
r

)
. Proof idea: same as

the number represented as a sum.
What if the equation is x1 +x2 + . . . xn < r? Then consider an additional “slack variable

y, and solve for the equation x1 + x2 + . . . xn + y = r.

Example 4. How many times will the “print” statement execute in the following piece of
code?

for i := 1 to 20 do
for j := 1 to i do

for k := 1 to j do
print(i · j + k)

Solution: Can sum up the series, but too complicated. An easier way to solve this problem
is to view each triple < i, j, k > as a triple of numbers where i ≥ j ≥ k. This is the same as
considering all possible triples < i, j, k > for 1 ≤ i, j, k ≤ 20, but without order (so we are
considering sets, not sequences). The number of triples of numbers between 1 and 20 without
the order will be the number of ways to choose, with repetition, three numbers between 1 and
20 each. Therefore, the number of times the print statement is executed is

(
3+20−1

3

)
= 1540.

2

