CS 2742 (Logic in Computer Science)
Lecture 10

Antonina Kolokolova

January 28, 2013

3.1 Complete set of connectives

From what we have done it is easy to see that any possible truth table (we will start saying
“boolean function” soon) can be represented by a formula written with just A,V and —.
Such set of connectives is called complete.

A stronger result tells us that even V is not necessary in this set (homework exercise). But
= is necessary, because every formula without — is true when all of its variables are set to
true. So contradiction cannot be described by such a formula, and any truth table with a 0
in the last column when all of its inputs are true cannot be represented by a formula using
only V and A.

We have seen that there are two connectives that allow us to construct formulas representing
all possible truth tables. Is there a single connective that can be used to construct formulas
with all possible truth tables? The answer is yes, and such connective is called NAND
(stands for “not-and”) in digital circuit design, or Sheffer’s stroke (written as |). It is defined
so plq is false when both p and ¢ are true, and true otherwise.

You can see here that it has values exactly opposite of the values

11) % g!q of p A ¢, hence the name NAND. To show that it is complete, let
1ol us look at how to simulate — and A with it. Once we have both
ol111 - and A, we can rewrite any formula to an equivalent one which
ololi only uses | as a connective using ideas from the problem in your

homework assignment.

To show how to represent —p, note that the first row of the truth table has 0 for the value
of the Sheffer’s stoke, and the last row has a 1. So —=p <= p|p. Similarly, p A ¢ <~
=(plg) < (pl9)|(plq), since Sheffer’s stroke is the negation of A and we just showed how
to do —.

23

4 Boolean functions and circuits

The propositional logic is a special case of Boolean algebra. In Boolean algebra 0 corresponds
to false (F), 1 to true (T), + is V and - it A; here, = corresponds to a unary — of arithmetic,
and —a is written as a. For this to be a proper Boolean algebra, the identities such as
commutativity, associativity, distributivity, identity have to hold for + and -. We will skip
the more general definition, and say for now that the rules are that 0 = 1,1 =0, 0 +a =
a,a+1=1,0-a=0and 1-a = a (note that there are more general Boolean algebras which
we will define later). Note also that logic identities hold for Boolean algebras as well, and in
fact can be derived from the axioms of Boolean algebra.

Just as arithmetic functions take as arguments some list of numbers often represented by
variables, and output a number as an answer, Boolean function on n variables takes n inputs
which have values 0 or 1, and produces a 0 or a 1 as an output. It is easy to see that,
with that notational substitution, Boolean algebra and propositional logic are very much
related: a propositional formula represents a boolean function when the formula is true on
its variables iff the function on the corresponding values of its arguments outputs 1.

The easiest way to describe a Boolean function is to give its truth table (from which a CNF
or DNF formula representing this function can be constructed). A boolean function is fully
described by its truth table: there can be several formulas descibing the same function,but
they must be logically equivalent. Usually when writing a truth table for a Boolean function
we write Os and 1s rather than Fs and Ts. Although we often can describe a function by
a formula much smaller than its truth table, there are functions that cannot be described
by anything smaller than the table itself. You will see a proof of this later if you take an
advanced course on theory of computation.

Example 1. Consider a Boolean function Majority(z,y, z) which outputs 1 (true) if at
least two of its inputs z,y, z are 1s. It has the following truth table:

x|y |z| Majority(x,y, 2)

1111

111]0]1 This can be generalized by defining a Boolean function
11011 Majority(zy, xs, ..., x,) for every value of n; such a
110(01]0 function outputs 1 if more than half of its inputs are
O(1]1]1 1. In that case, for every n there would be a different
0117070 truth table describing the function.

0/0]1]0

0[0]0]0

24

Figure 1: (pVq)A=r)A(=pV ((pV q) A—r)). The first is the parse tree for the formula and
the second is a corresponding circuit.

4.1 Formulas and circuits

It is often useful to draw a formula (or an arithmetic expression) as a diagram to show the
order of evaluation of its parts. For example, the following diagram shows how to evaluate
3+5*T:

Example 2. Essentially this diagram tells us in which order to evaluate parts

+ of the original arithmetic expression. Here, first we (recursively)

/ \ have to evaluate the expresions on both sides of the 4+, and then
apply the arithmetic operation + to the two results.

3 * Similarly, we can have a diagram that shows the order of evalu-

/ \ ation of a propositional formula (just change numbers to propo-

5 7

sitional variables and +, % to V, A, —.)

We call this representation a tree or parse tree of an arithmetic expression. To construct a
parse tree of a formula of the form A o B, where A and B are formulas themselves and o is
A, V,— or <, put the symbol for o on top, and the trees for A and B under it; connect o to
the top symbols of trees for A and B. If the connective is =, put only one line to the tree
for the expression being negated. When run out of connectives,put variables. To evaluate a
formula like this, start by evaluating, for every connective, its subformulas and then applying
the connective to the result

Example 3. Consider a propositional formula (pV ¢) A=r)A(=pV ((pVq) A—=r)). On inputs
(0,1,1) (that is, p = 0,¢ = 1,7 = 1) this formula evaluates to 0: (pV q)is 1, ((pV q) A —r)
is 0, the same expression in the second part is also 0, and =p V... is 1, but because the left
side of the A was 0 the whole formula evaluates to 0.

Note that in this formula there is a redundancy: there are two identical subformulas (sub-
trees) computing (p V ¢) A =r. We can combine them to obtain a circuit. A circuit has an
additional property that computed values of subformulas can be reused without recomputa-
tion. This often makes circuits much more concise than formulas.

25

X
X - TNy TVy

Figure 2: Types of gates in a digital circuit.

o
p

AND
AND

T
50—
Figure 3: A digital circuit for the formula from example 3.

With this we arrive to the notion of circuits corresponding to the circuits in computer
hardware. A hardware circuit consists of elements (called gates) performing exactly the
operations of conjunction, disjunction and negation. The following figure shows the notation
used in digital circuits and computer architecture literature to draw circuits.

A node in the tree or circuit diagram is usually called the gate. In a Boolean circuit, there
are V, A\, = gates, and also input gates and one output gate. The figure 4.1 shows a circuit
for the formula from example 3 written as a digital circuit.

Example 4.

Recall ~the Boolean function AND
Magjority(z,y,z) which evalu-

ates to 1 if and only if at least N » i
two of its inputs are 1. It can

be represented by the formula AND output
(x Ay)V (y A2)V (zAz). The —
following circuit computes majorit

: wing : p J Yy ®
of its three inputs. z)

So how do we construct a circuit for a given function? The most natural way (although not
giving the best circuit in many cases) is to start with a truth table of a function, write a
CNF or a DNF formula for it, then simplify it to make it smaller, and finally encode it as

26

a circuit. Can we do better then that? Sometimes, yes, but in general we do not have an
algorithm that, given a truth table, constructs us the best possible circuit (well, short of a
very brute-force method of trying all possible circuits up to the size of the truth table to
see if any of them work). This is an open problem in computer science, to design such an
algorithm. However, we know that for most Boolean functions the best circuit is of the size
comparable with the size of its truth table (think about a “random-looking” column in a
truth table: how would you describe it other than writing it out?).

4.2 Doing arithmetic with Boolean circuits

Binary notation: every natural number can be written using only Os and 1s. There is a
convention for defining negative numbers, rational numbers, reals and so on (for example,
real numbers are infinite strings of Os and 1s). Just as a number 209 in decimal notation is
2-1024+0-10' +9-10° in binary notation it is 11010001.

How to convert from decimal into binary? If the number is even, put a 0, if it is odd, put a
1, then divide by 2 (rounding down) and repeat until got to 1. Digits of a number in binary
are called bits.

What does it have to do with Boolean circuits? Boolean circuits can compute bits of numbers.

Example 5. Think of adding numbers 319 = 115 and 519 = 1015 (here, the subscript denotes
which base we are using, 10 or 2).

Here, the top row keeps track of the carry as we are adding bits from right

11 to left. This tells us that to compute a bit in the middle we need three

011 inputs: the two corresponding bits of the numbers and a carry from the

previous step. This also tells us that here we need two outputs of the

101 circuits (in terms of Boolean functions, we can think about each output
— as computed separately; however, in real life we reuse parts of circuits to
1000 produce several outputs.

A construction of a circuit for addition consists of three parts. First, we construct a half-
adder which adds two bits without considering the carry and outputs a sum and a carry
from that addition. Such a circuit could be used to add two one-bit numbers and is used to
add the two lowest bits of the numbers. Then we will use a half-adder to construct a circuit
full adder which adds two bits taking into account the carry. And then a number of such
full adders are connected recursively (that is, with an output of one feeding as an input do
the next) to compute the sum of an n-bit number. See figure 5 for the circuit diagrams.

In the same fashion any arithmetic function can be evaluated using Boolean circuits to
evaluate bits of the resulting number.

27

Carry

i

Half-adder

Sum
AND

Do

Carry

AND

i

Full adder

Half-adder

Carry

Carry
OR

Sum

Half-adder

Sum

Figure 4: A half-adder and a full adder used to add numbers in binary

28

