CS 2742 (Logic in Computer Science) Lecture 3

Antonina Kolokolova

January 14, 2013

1.1 Logical equivalences

Recall the puzzle from the previous class: on some island, there are knights (who always tell the truth) and knaves (who always lie). You meet two islanders (call them A and B) and hear the first one say "at least one of us is a knave". Can you tell whether the islanders are knights or knaves and which islander is which?

We solve this puzzle using a truth table. Take p: "A is a knight" and q: "B is a knight.". Then the sentence "At least one of us is a knave" is translated as $(\neg p \lor \neg q)$, since being a knave is the negation of being a knight. Now, we want to know when the truth value of this sentence $(\neg p \lor \neg q)$ is the same of the truth value of p: that is, if A is a knight, then what he said must be true, and if A is a knave, then what he said must be false. This we can state as A is a knight if and only if "at least one of us is a knave" is true. We represent this as a truth table as follows:

p	q	$(\neg p \vee \neg q)$	$p \leftrightarrow (\neg p \lor \neg q)$
Τ	Т		F
$\begin{array}{ c c }\hline T \\ T \end{array}$	F	Γ	T
\mathbf{F}	Τ	$\mid \mathrm{T} \mid$	F
F	F	Τ	F

As you can see, the only scenario when what A says corresponds correctly with A's being a knight/knave is the second line: that is, when A is a knight and B is a knave. Let us introduce the notation \iff to mean *logical equivalence* (that is, two formulas having the same truth values for any truth assignment to their variables). A better way way of stating the last condition is as a logical equivalence of p and $f(\neg p \lor \neg q)$, that is, $p \iff (\neg p \lor \neg q)$.

Definition 1 We say that two formulas are logically equivalent $(A \iff B)$ if they have the same truth value under any truth assignment.

That is, in a truth table the columns of logically equivalent formulas are identical.

Theorem 1 Two formulas A and B are logically equivalent if and only if a formula $A \leftrightarrow B$ is a tautology.

For the proof, Check that the columns for A and B are the same if $A \leftrightarrow B$ is a tautology, and different if it is not. Although A and B are formulas here, this still can be checked with just a 4-line truth table.

A useful property of logically equivalent formulas, called *substitution*, is that if in any formula you replace a subformula by another that is logically equivalent to it, then the value of the whole formula would not change. For example, $p \land (q \lor \neg q)$ is logically equivalent to $(p \land T)$, which is in turn equivalent to p (can check this using a truth table). So if in a formula there is an occurrence of $p \land (q \lor \neg q)$ it can be safely replaced with just p, thus simplifying the formula. Another example that you see quite often is substituting $(p \to q)$ with $(\neg p \lor q)$, so, for example, $r \land (p \to q) \lor \neg p$ is logically equivalent to $r \land (\neg p \lor q) \lor \neg p$.

1.2 Logical identities

Now that we have a notion of logical equivalences we can talk about a few identities in propositional logic. We will list them as pairs of equivalent formulas.

Name	∧-version	V-version
Double negation	$\neg\neg p \iff p$	
DeMorgan's laws		$ \neg (p \lor q) \iff (\neg p \land \neg q) $
Commutativity	$(p \land q) \iff (q \land p)$	$(p \lor q) \iff (q \lor p)$
Associativity	$(p \land (q \land r)) \iff ((p \land q) \land r)$	$ \mid (p \lor (q \lor r)) \iff ((p \lor q) \lor r) \mid $
Distributivity	$p \land (q \lor r) \iff (p \land q) \lor (p \land r)$	$ \mid p \lor (q \land r) \iff (p \lor q) \land (p \lor r) \mid $
Identity	$p \wedge T \iff p$	$p \lor F \iff p$
	$p \wedge F \iff F$	$p \lor T \iff T$
Idempotence	$p \wedge p \iff p$	$p \lor p \iff p$
Absorption	$p \land (p \lor q) \iff p$	$p \lor (p \land q) \iff p$

Notice again (as working our way to boolean algebras) that many of these identities behave just like algebraic and arithmetic identities, with \land behaving like \times , \vee like +, T like 1 and F like 0. For example, commutativity and associativity laws are the same as for numbers: (3+2)+5=3+(2+5). One notable exception is that with numbers there is just one form of distributed law, namely the \land form $(a \times (b+c) = (a \times b) + (a \times c)$, and the \vee form does not hold $(a+b\times c) \neq (a\times b) + (a\times c)$, whereas in logic both forms are true.

It is convenient to treat \to and \leftrightarrow as "syntactic sugar", and define them to be their equivalent formulas with just \vee , \wedge , \neg . That is, we will say that $(p \to q) \iff (\neg p \lor q)$ by definition, and so is $(p \leftrightarrow q) \iff (\neg p \lor q) \land (\neg q \lor p)$.