CS 2742 (Logic in Computer Science) – Fall 2008 Lecture 4

Antonina Kolokolova

September 13, 2011

1.1 More examples of simplifying formulas

Here we go over a few more examples similar to your assignment, simplifying formulas until they are as small as we can (reasonably easily) get using the rules from the last lecture.

Example 1.

	$p \leftrightarrow ((q \land \neg r) \to q)$
Definition of \rightarrow	$\iff p \leftrightarrow (\neg (q \land \neg r) \lor q)$
DeMorgan	$\iff p \leftrightarrow ((\neg q \lor \neg \neg r) \lor q)$
Commutativity	$\iff p \leftrightarrow ((\neg \neg r \lor \neg q) \lor q)$
Associativity (dropping parentheses)	$\iff p \leftrightarrow (\neg \neg r \lor (\neg q \lor q))$
Definition of T	$\iff p \leftrightarrow (\neg \neg r \lor T)$
Identity	$\iff p \leftrightarrow T$
Because \leftrightarrow is an equivalence	$\iff p$

The last step could be done more formally as follows:

$p \leftrightarrow T$	
$\iff (p \to T) \land (T \to p)$	Definition of \leftrightarrow
$\iff (\neg p \lor T) \land (\neg T \lor p)$	Definition of \rightarrow
$\iff (\neg p \lor T) \land (F \lor p)$	Definition of F
$\iff T \land (F \lor p)$	Identity
$\iff (F \lor p)$	Identity
$\iff p$	Identity

1.2 Conditional statements

Conditional statements are ones of the form "if p then q", $p \to q$. Recall that we logically define $p \to q \iff (\neg p \lor q)$.

We use the following terminology when talking about conditional statements:

1) Contrapositive of $p \to q$ is $\neg q \to \neg p$. True whenever the original implication is.

Proof. Recall that $(p \to q) \iff (\neg p \lor q)$. Now,

$\neg q \rightarrow \neg p$		
$\iff (\neg \neg q \lor \neg p)$	Definition of \rightarrow	
$\iff (q \lor \neg p)$	Double negation	
$\iff (\neg p \lor q)$	Commutativity $\iff (p \to q)$	Definition of \rightarrow

Thus, a contrapositive of an if-then statement is logically equivalent to the original statement. $\hfill \Box$

- 2) Converse and inverse: $q \to p$ and $\neg p \to \neg q$. Contrapositives of each other, can have a different truth value from $p \to q$.
- 3) Sufficient condition: p is sufficient for q if $p \to q$. The "if" part of if-then.
- 4) Neccessary condition: p is necessary for q if $\neg p \rightarrow \neg q$, that is, $q \rightarrow p$. The "then" part of "if-then".
- 5) If and only if $(p \text{ iff } q, p \leftrightarrow q) \text{ means } (p \rightarrow q) \land (q \rightarrow p).$

Puzzle 3. What is the value of 2 + 2 = 4?