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9.1 Correctness of recursive algorithms

Many of you know the Binary Search algorithm for finding an element in a sorted array. The
inputs are an array A of, say, integers and an another integer x, and the output is either the
index of the array where that element is located (e.g, if for some i A[i] = x, then return i)
or an error code (e.g., 0). Because the input array is sorted, it is possible to find x in the
array (or check that it is not there) much faster then by checking every element in a way
similar to what we did with Max. The BinarySearch algorithm does it as follows: it splits
the array into two halves, and then checks if x is greater than the middle element. If so, it
is clear that if x is in the array then it must be in the right half; if not, in the left half.

In this section, we will analyze the Recursive Binary search algorithm; the iterative version
is left as an exercise. The program consists of two parts: MainBinSearch is a short program
making the first recursive call to RecBinSearch, which is the part where all the work is done.

MainBinSearch(A, x)
return RecBinSearch(A, 1, |A|, x)

Let’s leave the precondition and postcondition for MainBinSearch as an exercise, and look
at the recursive part of the program.

The following code does the main part of the work.

RecBinSearch(A, f, l, x)
iff = l then

if A[f ] = x then
return f
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else
return 0

else
m = (f + l)/2
if A[m] ≥ x then

return RecBinSearch(A, f,m, x)
else

return RecBinSearch(A, m + 1, l, x)
end if

end if

RecBinSearch:
Precondition: 1 ≤ f ≤ l ≤ |A| and A[f..l] is sorted.
Postcondition: return t, f ≤ t ≤ l, such that A[t] = x, or, if x is not in the array between f
and l, return t = 0.

It is easy to see that the precondition of RecBinSearch follows from the precondition for
MainBinSearch for 1 = f and l = |A|. Also, the postcondition of MainBinSearch follows
from the postcondition of RecBinSearch since the statements that x is somewhere between
the first and the last element of the array and that it is somewhere in the array are equivalent.

It remains to prove correctness of RecBinSearch. The proof of correctness of RecBinSearch
will proceed by strong induction on length of the array, l − f .

P (k) : if 1 ≤ f ≤ l ≤ |A| and |A[f..l] = k and A[f..l] is sorted then the call terminates and
returns t, f ≤ t ≤ l, such that A[t] = x, or, if x is not in the array between f and l, return
t = 0.

Base Case: k = 1. Then l = f so there is just one element in A[f..l]. RecBinSearch returns
f if this element is x and 0 otherwise, and makes no further recursive calls.

Induction. Step. Strong induction:
Assume for all 1 ≤ i < k P (i) holds.
Then the algorithm makes one recursive call to RecBinSearch, with different parameters
depending whether A[m] ≥ x and A[m] < x. The input to the algorithm is just a part of
the array between f and l. As we said before, if x > A[m] then it must be between A[m+1]
and A[l]; otherwise, it is in the other half. By induction hypothesis, recursive call will return
us the correct answer which we just return. Here we are using strong induction because the
sizes of the new arrays are half of the size of the old ones, and besides, due to rounding/odd
length of the subarray it might be the case that the length of both halves is the same.

The last remaining part to prove is that the algorithm will terminate. Note that the algorithm
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halves the length of the array at every iteration, so eventually the size of the array will
approach 1. It cannot become a 0 because the two halves always differ at most by 1 element,
and so if one of them is a 0, then another must be 1, but in this case the array we are
splitting would be already of length 1.
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