CS 2742 (Logic in Computer Science) – Fall 2008 Lecture 24

Antonina Kolokolova

November 25, 2008

7.1 Induction

for all predicates $P, (P(0) \land \forall k(P(k) \to P(k+1))) \to \forall nP(n)$

Structure of a proof by induction:

- 1) **Predicate** State which P(n) you are proving as a function of n.
- 2) Base case: Prove P(a).
- 3) Induction hypothesis: State "Assume P(k) holds" explicitly.
- 4) Induction step: Show how $P(k) \rightarrow P(k+1)$. That is, assuming P(k) derive P(k+1).

Example 1. Recall the following question: show that every amount of change ≥ 8 can be paid with only 3c and 5c coins. This time we will prove this using induction Let $P(n) : \exists i, j \geq 0$ n = 3i + 5j

Base case: Let n = 8. Then n = 3 + 5, i = j = 1. For this method of solving the problem, it is also convenient to have a base case $n = 9 = 3 \cdot 3$, i = 3, j = 0.

Induction hypothesis: Assume that $\exists i, j \ge 0$ k = 3i + 5j. This assumption gives us the *i* and *j* which we will be using in the induction step.

Induction step: We want to show that $\exists i', j' \geq 0$ such that k + 1 = 3i' + 5j'. Look at *i* and *j* given to us by induction hypothesis, that is, *i* and *j* such that k = 3i + 5j. Consider the following two cases.

Case 1: j > 0. That is, at least one 5c coin was used to make k. Then we can replace this 5c coin with two 3c coins to get k + 1. That is, i' = i + 2 and j' = j' - 1, so k + 1 = 3i' + 5j' = 3(i + 2) + 5(j - 1).

Case 2: j = 0. Suppose that there was no 5c coin used to make up k, that is, k = 3i for

some *i*. Since $k \ge 8$, $i \ge 3$. Now, to make k + 1 we can take three 3c coins out of *i* used to make up k and replace them by two 5c coins. That is, i' = i - 3 and j' = 2. Since $i \ge 3$, $i' \ge 0$, and k + 1 = 3i' + 5j'. This completes the proof.

Note how here we actively used the values i and j, existence of which was given to us by the induction hypothesis, to build our new i and j existence of which we were proving in the induction step. This is one reason why it is good to write out the induction hypothesis: to see the values that are available to be used in the induction step.

Example 2. Here is an example of proving an unequality by induction: $n^2 \leq 2^n$ for n > 3. You have seen this already in the assignment: this unequality says that for large enough numbers the size of a powerset 2^A is always larger than the size of a Cartesian product of a set with itself $A \times A$. Another way of looking at this unequality is from the algorithmic point of view: it says that for large enough input size n, an algorithm that runs in time $O(n^2)$ always runs faster than an algorithm that runs in time $O(2^n)$ and is not in $O(n^2)$.

We will prove this unequality by induction.

Predicate $P(n): n^2 \le 2^n$.

Base case: $P(4): 4^2 = 16 \le 2^4$

Induction hypothesis: assume that for k > 3, $k^2 \le 2^k$.

Induction step: Assuming P(k), prove that $(k+1)^2 \leq 2^{k+1}$.

First, $(k + 1)^2 = k^2 + 2k + 1$ and $2^{k+1} = 2 \cdot 2^k = 2^k + 2^k$. By induction hypothesis, $k^2 + 2k + 1 \leq 2^k + 2k + 1$. It remains to show that $2k + 1 \leq 2^k$, where this is the second "copy" of 2^k in $2^k + 2^k$ expression. We could prove this by doing another induction proof, but in this case it can be done easier. Notice that it is sufficient to show that $2k + 1 \leq k^2$, because then by induction hypothesis we will get $2k + 1 \leq k^2 \leq 2^k$. To see that $2k + 1 \leq k^2$, divide both sides of the unequality by k. Since k is positive, this preserves the unequality, resulting in $2 + 1/k \leq k$. But we do know that k > 3, so 2 + 1/k < 3 < k. Therefore, $2k + 1 \leq k^2 \leq 2^k$, and so $k^2 + (2k + 1) \leq 2^k + 2^k$, completing the proof.