
CS 2742 (Logic in Computer Science)
Lecture 9

Antonina Kolokolova

September 28, 2009

3.1 Formulas and circuits

It is often useful to draw a formula (or an arithmetic expression) as a diagram to show the
order of evaluation of its parts. For example, the following diagram shows how to evaluate
3 + 5 ∗ 7:

Example 1.

+

3 *

5 7

Essentially this diagram tells us in which order to evaluate parts
of the original arithmetic expression. Here, first we (recursively)
have to evaluate the expresions on both sides of the +, and then
apply the arithmetic operation + to the two results.
Similarly, we can have a diagram that shows the order of evalu-
ation of a propositional formula (just change numbers to propo-
sitional variables and +, ∗ to ∨,∧,¬.)

We call this representation a tree or parse tree of an arithmetic expression. To construct a
parse tree of a formula of the form A ◦ B, where A and B are formulas themselves and ◦ is
∧,∨,→ or ↔, put the symbol for ◦ on top, and the trees for A and B under it; connect ◦ to
the top symbols of trees for A and B. If the connective is ¬, put only one line to the tree
for the expression being negated. When run out of connectives,put variables. To evaluate a
formula like this, start by evaluating, for every connective, its subformulas and then applying
the connective to the result

Example 2. Consider a propositional formula (p∨q)∧¬r)∧ (¬p∨ ((p∨q)∧¬r)). On inputs
(0, 1, 1) (that is, p = 0, q = 1, r = 1) this formula evaluates to 0: (p ∨ q) is 1, ((p ∨ q) ∧ ¬r)
is 0, the same expression in the second part is also 0, and ¬p ∨ . . . is 1, but because the left
side of the ∧ was 0 the whole formula evaluates to 0.

Note that in this formula there is a redundancy: there are two identical subformulas (sub-
trees) computing (p ∨ q) ∧ ¬r. We can combine them to obtain a circuit. A circuit has an

23



∧

∨∧

∨ ¬

p q r

¬

p

∧

∨

¬

∧

∨ ¬

q

∧

∨ ¬

p q

r p

r

p

Figure 1: (p∨ q)∧¬r)∧ (¬p∨ ((p∨ q)∧¬r)). The first is the parse tree for the formula and
the second is a corresponding circuit.

NOT ANDy

x x
x

y
x ∧ y x ∨ y

OR
¬x

Figure 2: Types of gates in a digital circuit.

additional property that computed values of subformulas can be reused without recomputa-
tion. This often makes circuits much more concise than formulas.

With this we arrive to the notion of circuits corresponding to the circuits in computer
hardware. A hardware circuit consists of elements (called gates) performing exactly the
operations of conjunction, disjunction and negation. The following figure shows the notation
used in digital circuits and computer architecture literature to draw circuits.

A node in the tree or circuit diagram is usually called the gate. In a Boolean circuit, there
are ∨,∧,¬ gates, and also input gates and one output gate. The figure 3.1 shows a circuit
for the formula from example 2 written as a digital circuit.

Example 3.

Recall the Boolean function
Majority(x, y, z) which evalu-
ates to 1 if and only if at least
two of its inputs are 1. It can
be represented by the formula
(x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z). The
following circuit computes majority
of its three inputs.

AND

AND

AND

OR

OR

x

y

z

output

So how do we construct a circuit for a given function? The most natural way (although not
giving the best circuit in many cases) is to start with a truth table of a function, write a

24



NOT

OR

NOT

AND

AND

OR

q

p

r

output

Figure 3: A digital circuit for the formula from example 2.

CNF or a DNF formula for it, then simplify it to make it smaller, and finally encode it as
a circuit. Can we do better then that? Sometimes, yes, but in general we do not have an
algorithm that, given a truth table, constructs us the best possible circuit (well, short of a
very brute-force method of trying all possible circuits up to the size of the truth table to
see if any of them work). This is an open problem in computer science, to design such an
algorithm. However, we know that for most Boolean functions the best circuit is of the size
comparable with the size of its truth table (think about a “random-looking” column in a
truth table: how would you describe it other than writing it out?).

3.2 Doing arithmetic with Boolean circuits

Binary notation: every natural number can be written using only 0s and 1s. There is a
convention for defining negative numbers, rational numbers, reals and so on (for example,
real numbers are infinite strings of 0s and 1s). Just as a number 209 in decimal notation is
2 · 102 + 0 · 101 + 9 · 100, in binary notation it is 11010001.

How to convert from decimal into binary? If the number is even, put a 0, if it is odd, put a
1, then divide by 2 (rounding down) and repeat until got to 1. Digits of a number in binary
are called bits.

What does it have to do with Boolean circuits? Boolean circuits can compute bits of numbers.

Example 4. Think of adding numbers 310 = 112 and 510 = 1012 (here, the subscript denotes
which base we are using, 10 or 2).

25



OR

AND

AND

NOT

Sum

Carry

Half-adder

y

x

Half-adder

Half-adder

OR

q

p

Carry

Carry
Carry

Sum

Sum

Full adder

Figure 4: A half-adder and a full adder used to add numbers in binary

11

011

101

1000

Here, the top row keeps track of the carry as we are adding bits from right
to left. This tells us that to compute a bit in the middle we need three
inputs: the two corresponding bits of the numbers and a carry from the
previous step. This also tells us that here we need two outputs of the
circuits (in terms of Boolean functions, we can think about each output
as computed separately; however, in real life we reuse parts of circuits to
produce several outputs.

A construction of a circuit for addition consists of three parts. First, we construct a half-

adder which adds two bits without considering the carry and outputs a sum and a carry
from that addition. Such a circuit could be used to add two one-bit numbers and is used to
add the two lowest bits of the numbers. Then we will use a half-adder to construct a circuit
full adder which adds two bits taking into account the carry. And then a number of such
full adders are connected recursively (that is, with an output of one feeding as an input do
the next) to compute the sum of an n-bit number. See figure 4 for the circuit diagrams.

In the same fashion any arithmetic function can be evaluated using Boolean circuits to
evaluate bits of the resulting number.

26


