
CS 2742 (Logic in Computer Science)
Lecture 7

Antonina Kolokolova

September 28, 2009

3 Resolution.

Remember the resolution rule we introduced in the last lecture:

Definition 1 (Resolution rule). : Given two clauses of the form C∨x) and (D∨¬x), where
C and D are (possibly empty) disjunction of variables, can derive a (possibly empty) clause
(C ∨D).

That is,
(C ∨ x) ∧ (D ∨ ¬x) → (C ∨D)

where C = (l1 ∨ · · · ∨ lk) and D = (l′1 . . . l′k′) for some literals. If there is a repeated literal,
only write it once.

The goal is to derive a contradiction (that is, an empty clause obtained by resolving (x) with
(¬x) for some variable x.

Example 1. Let’s look at another example. Now there are only two variables, and the four
clauses contain all possible combinations (so the formula is a contradiction) (x ∨ y) ∧ (¬x ∨
y) ∧ (x ∨ ¬y) ∧ (¬x ∨ ¬y). You can easily see that any truth assignment to x and y falsifies
one clause.

b
b

bb

"
"

"
" b

b
bb

"
"

"
"

aaaaaaaa

!!!!!!!

(x ∨ y) (¬x ∨ y) (x ∨ ¬y) (¬x ∨ ¬y)

y ¬y

()

18



Resolution proof system is very powerful in that given any formula in CNF form it can check
whether it is a contradiction. However, resolution is not very efficient. Although it is much
more efficient in practice than using truth tables (for example, the (x1 ∧ (x1 → x2) ∧ (x2 →
x3) ∧ · · · ∧ (xn1 → xn) ∧ ¬xn can be done by a resolution proof system in n steps, whereas
the truth table would have 2n lines), there are examples of problems on which resolution
proof system has to explore all possibilities, and so is similar to the truth table method in
efficiency. The most prominent such example is the PigeonHole Principle, which says that
it is impossible to put n + 1 element (pigeon) into n places (holes) without two elements
getting into the same place. You needed to use this principle, this kind of counting reasoning
to solve the last lecture puzzle.

The resolution is still the most popular method of programming automated proof systems
because if its clarity and simplicity. However, when working with or programming such a
system keep in mind that resolution “can’t count”.

At this point a natural question is: how can we use resolution to deal with general propo-
sitional formulas, that is, ones not in CNF form. Of course, we could create a truth table
and write a corresponding CNF formula, but if we have a truth table then we can just test
whether a formula is a contradiction by checking if all entries in the last column are Fs.
Another idea is to manipulate the formula using logic identities until it becomes a CNF.
This is possible, but unfortunately can result in a very large (size comparable to the truth
table) formula, especially when converting a DNF into a CNF (think of converting a formula
(x1 ∧ y1) ∨ (x2 ∧ y2) . . . (xn ∧ yn) into a CNF: you will end up with 2n clauses on n variables
each, one for every combination of Xs and Ys).

A different idea is to add new variables in such a way that the new formula is a contradiction
if and only if the original one was a contradiction. Here is one way of doing it.

1) Assign a new variable to every binary connector (∧,∨,→,↔) in the formula (starting
from the outermost connector, operation to be done last). For example, if the original
formula is ((x1 → x2)∨¬((¬x1 ↔ x3)∨x4))∧¬x2, then assign variable y1 to outermost
∧ connector,then the variable y2 to the ∨ before x4 and so on (think of writing a parse
tree of the formula and assigning y1 to the top, y2 and (possibly) y3 to its children,
etc).

2) Next, write the conditions describing the new variables: for example, if our y6 was
assigned to ↔ in ¬x1 ↔ x3, then we need the condition (y6 ↔ (¬x1 ↔ x3)) which says
that y6 is true if and only if the expression (¬x1 ↔ x3) is true. The continue writing
similar expressions for other yis, using other yi variables to denote subformulas (for
example, the top ∧ denoted by y1 gets (y1 ↔ (y2 ∧ ¬x2)). Finally, add clause (y1) to
the formula which will mean that the whole original formula is true.

3) We are almost done: our formula is a conjunction of small parts; most importantly,
each small part (yi ↔ (. . . )) only involves three variables (for example, y1, y2 and x2 in

19



definition of y1, or y2 ↔ (y3∨¬y4) for y3). Three variables give us a small enough truth
table (8 lines), that we can write a CNF for this small table with just 7 or less clauses,
each with at most 3 variables.. So the size of the new formula becomes approximately
the number of logical connectives (times a constant).

4) The resulting formula is a CNF, and although it has many more variables, it is a
contradiction if and only if the original formula was.

20


