CS 2742 (Logic in Computer Science) – Fall 2008 Lecture 4

Antonina Kolokolova

September 18, 2009

Absorption laws: $p \lor (p \land q) \iff p \land (p \lor q) \iff p$.

1.1 Conditional statements

Conditional statements are ones of the form "if p then q", $p \to q$. Recall that we logically define $p \to q \iff (\neg p \lor q)$.

We use the following terminology when talking about conditional statements:

1) Contrapositive of $p \to q$ is $\neg q \to \neg p$. True whenever the original implication is.

Proof. Recall that $(p \to q) \iff (\neg p \lor q)$. Now,

 $\begin{array}{ll} \neg q \to \neg p \\ \Longleftrightarrow (\neg \neg q \lor \neg p) & \text{Definition of} \to \\ \Leftrightarrow (q \lor \neg p) & \text{Double negation} \\ \Leftrightarrow (\neg p \lor q) & \text{Commutativity} \iff (p \to q) & \text{Definition of} \to \end{array}$

Thus, a contrapositive of an if-then statement is logically equivalent to the original statement. $\hfill \Box$

- 2) Converse and inverse: $q \to p$ and $\neg p \to \neg q$. Contrapositives of each other, can have a different truth value from $p \to q$.
- 3) Sufficient condition: p is sufficient for q if $p \to q$. The "if" part of if-then.
- 4) Neccessary condition: p is necessary for q if $\neg p \rightarrow \neg q$, that is, $q \rightarrow p$. The "then" part of "if-then".

5) If and only if $(p \text{ iff } q, p \leftrightarrow q) \text{ means } (p \rightarrow q) \land (q \rightarrow p).$

Example 1. Consider the sentence "if n is divisible by 4, then n is divisible by 2" (we will use the notation n|4 to mean n is divisible by 4). This is an if-then statement. Its contrapositive is "if n / 2 then n / 4. That is, if n is an odd number then it is definitely not divisible by 4.So n|4 is sufficient for n|2 (if n is divisible by 4, it is sufficient for n to be divisible by 2). On the other hand, n|2 is necessary for n|4.

- 1) Direct proof: show that if p is true directly.
- 2) Proof by contrapositive: instead of $p \to q$ prove $\neg q \to \neg p$.

Lemma 1. If n^2 is even, then n is even.

Proof. We will show this by showing that if n is odd, then n^2 is odd. If n is odd, then n = 2k + 1 for some k. Then $(2k+1)^2 = 2(2k^2+2k)+1$, which is an odd number. This proves that if n is odd, then n^2 is odd, thus proving the contrapositive of if n^2 is even then n is even, and so proving the statement "if n^2 is even then n is even" itself. \Box

3) Proof by contradiction: to show that p is true, show that $\neg p \to F$. It is easy to show that $(\neg p \to F)$ is logically equivalent to p: just note that $(\neg \neg p \lor F) \iff (p \lor F) \iff p$ by applying the definition of implication followed by the double negation law followed by the identity law.

Theorem 1. $\sqrt{2}$ is irrational.

Proof. Recall that a number is called *rational* if it can be represented as an (irreducible) fraction of two integers. Assume, for the sake of contradiction, that $\sqrt{2}$ is rational: that is, there are integers m and n which do not have any common divisors > 1 such that $\sqrt{2} = m/n$.

- If $\sqrt{2} = m/n$ then $(\sqrt{2})^2 = m^2/n^2$.
- From here, $2n^2 = m^2$, which means that m^2 is even.
- By the lemma above, then m is even, so m = 2k for some k.
- Then $m^2 = 4k^2$. So $2n^2 = 4k^2$, and, dividing by 2, $n^2 = 2k^2$. So n^2 is even.
- Using the lemma again, conclude that n is even.
- So both n and m are even, but we assumed that m and n do not have a non-trivial common divisor. This is a contradiction.

4) Proof by cases: to show that p is true, prove $(q \to p) \land (\neg q \to p)$.

Lemma 2. For any natural number n, $\lfloor (n+1)/2 \rfloor = \lceil n/2 \rceil$

Here, $\lfloor k \rfloor$ is a *floor* of a (real) number, defined to be the largest integer smaller than or equal to k. For example, $\lfloor 5/2 \rfloor = 2$, and $\lfloor 4/2 \rfloor = 2$. Similarly, a *ceiling* of a number is the smallest integer larger than or equal to that number. So $\lceil 5/2 \rceil = 3$ and $\lceil 4/2 \rceil = 2$. For an integer, both its floor and its ceiling are equal to that integer itself; for a non-integer, the floor is is rounded-down value and the ceiling is rounded up.

Proof. Case 1: *n* is even. Then
$$\lfloor (n+1)/2 \rfloor = n/2 = \lceil n/2 \rceil$$
.
Case 2: *n* is odd. Then $\lfloor (n+1)/2 \rfloor = (n+1)/2 = \lceil n/2 \rceil$.

Puzzle 4. A from the island of knights and knaves said: "If I am a knight, then I'll eat my hat!". Prove that A will eat his hat.