
CS 2742 (Logic in Computer Science) – Fall 2008
Lecture 28

Antonina Kolokolova

November 28, 2008

8.1 Grows of functions

What do we mean when we say that one algorithm. is faster than another? In computer
science, the standard definition of one algorithm being faster than the other is that on large
enough inputs the faster algorithm makes less operations in the worst case. What it means
to say “in the worst case” is that out of all executions of algorithm for an input of a give
size, we look at the longest execution time. For example, if we are searching for an element
in the array, it is always possible that we get lucky and hit this element on the very first
step. However, it is more realistic to consider the running time of this algorithm in the case
when the element is the last one we look at, or not in the array at all: we know then that
the algorithm can’t do worse than that, this is a guarantee on its running time.

Here we will review the growth rate of some functions. Think of these functions as describing
the worst-case running time of algorithms, so a function with a larger increase in its value
will correspond to a slower algorithm.

As many of you know by now, f ∈ O(g) if “f is at least as fast as g” is defined as follows:
∃n0, c foralln > n0|f(n)| ≤ c|g(n)|

In particular, a f(n) = log n function grows slower (=better algorithm) than linear f(n) = n
(so log n ∈ O(n)), which is in turn is better than quadratic f(n) = n2, and all of them are
much better than the exponential f(n) = 2n. As an example, a binary search has logarithmic
time complexity, searching in an array is linear, mergesort is O(n log n) which is better than
the bubble sort with time O(n2).

Example 1. Here is an example of proving that one function is in O() of another. We will
show that 3n ∈ O(2n). Set no = 2 and c = 3. Now ∀n > 3, 3n < 3 ∗ 2n.

But there are functions, recursively defined, that grow so fast that we can’t even describe

78



their growth. An example of such a function is the Ackermann’s function, recursively defined
as follows:

∀m, n > 0, A(0, n) = n + 1, A(m, 0) = A(m− 1, 1), A(m, n) = A(m− 1, A(m, n− 1))

This function is well-defined, but A(x, x) grows very fast: A(4, 4) is already 222655536

.

There are some recursive function that is not well-defined: G(n) =


1 if n = 1

1 + G(n/2) if n is even

G(3n + 1) if n > 1 and is odd

Not well-defined because G(5) = G(14) = 1 + G(7) = 1 + G(20) = 1 + (1 + G(10)) =
1 + 1 + 1 + G(5) = 3 + G(5). So G(5) = 3 + G(5), subtracting G(5) from both sides get
0 = 3!

The “3n+1” problem is: T (n) =

{
n/2 if n is even

3n + 1 if n is odd
It is still open if it eventually

produces 1 for any starting number n.

9 Correctness of algorithms

In the next lecture notes, we will show how to use logic to analyze algorithm correctness
rather than the running time (since we started the next lecture by repeating most of the
material from the end of this one, I will skip putting it in this set of notes).

79


