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7.1 Variants of induction

You have seen already the Well-Ordering Principle, which can be considered an (equivalent)
variant of induction. In this lecture we will look at another (also equivalent, although looking
more powerful) variant of induction, called strong (or sometimes complete) induction. Here,
instead of assuming that P (i) holds for just one preceding element i, we assume that it holds
for all elements from the base case up to (but not including) k, and then proceed with this
stronger assumption to proving P (k). We will prove the equivalence of the three principles
later.

Definition 1 (Strong induction). Let P (n) be a property that is defined for integers n, and
let a be a fixed integer. Suppose the following two statements are true:

1) Base case: for some b ≥ a, ∀a ≤ c ≤ b, P (c) is true.

2) Induction step: (∀i, b ≤ i < kP (i)) → P (k)

Then the statement
for all integers n ≥ a, P (n)

is true.

Example 1. Here is another way of solving the 3c and 5c coins problem, this time using
strong induction. Recall that the goal is to prove that ∀n ≥ 8,∃i, j ≥ 0 n = 3i + 5j.
Proof: Let P (n) be ∃i, j ≥ 0 n = 3i + 5j, as before.
Base case: This time, there are three base cases, n = 8 = 3 · 1 + 5 · 1, n = 9 = 3 · 3 + 5 · 0,
and n = 10 = 3 · 0 + 5 · 2.
Induction hypothesis Assume that ∀m, 8 ≤ m < k, ∃i, j ≥ 0m = 3i + 5j.
Induction step. As in the proof with well-ordering, consider k − 3. If k − 3 ≥ 8, then
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there are i, j such that k − 3 = 3i + 5j and so k = 3(i + 1) + 5j. Otherwise, k must be one
of the three base cases 8, 9 or 10, for which we know the corresponding i and j.

In this example, we made use of two things: first, strong induction allowed us to talk about
the value of k − 3 as opposed to just k − 1. Second, we explicitly used base cases.

The following is a classical example of using strong induction. It shows how it is applicable
in cases where we do not know beforehead which elements between the base case and k we
need to use.

Example 2 (Divisibility by prime). Show that for every natural number n ≥ 2, n is divisible
by a prime number.
Proof: Let P (n) be a predicate ∃p ∈ N, 2 ≤ p < n, p|n ∧ ∀q, q 6 |p. Here, the notation q 6 |p
(“q does not divide p”) means that there is no such integer r that p = qr.
Base case: 2 is a prime, so it is divisible by itself.
Induction hypothesis: Assume that for all numbers i, 2 ≤ i < k, i is divisible by a prime
number p (that is, ∃p geq2 such that p|i).
Induction step: Look at a number k. If k is prime, done, since k is divisible by itself. If
it is not, then by definition of a number being not prime ∃a, b ≥ 2, k = ab. Take a to be our
i from induction hypothesis. By induction hypothesis, there is a prime numbers p ≥ 2 such
that p|a Since the division relation is transitive, p|k. Here, we don’t even need to use the
induction hypothesis for b; we would if we were proving the Unique Factorization Theorem
that says that any number can be represented as a product of powers of primes.

Here, we relied heavily on having the strong induction hypothesis, because a and b can be
any numbers between 2 and k/2.
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