CS 2742 (Logic in Computer Science) - Fall 2008 Lecture 18

Antonina Kolokolova

November 10, 2008

7 Cartesian products, functions, relations

Cartesian product of sets $A_{1} \ldots A_{n}$, denoted $A_{1} \times \cdots \times A_{n}$ is a set of ordered tuples $<$ $a_{1}, a_{2}, \ldots a_{n}>$ such that $a_{1} \in A_{1} \wedge a_{2} \in A_{2} \wedge \cdots \wedge a_{n} \in A_{n}$. Note that an ordered tuple (a, b) is not the same as a set $\{a, b\}$: here the order of elements matters, so the tuple $<1,2>$ is not the same as the tuple $<2,1>$. For two sets, their Cartesian product is $A \times B=\{(a, b) \mid a \in A$ and $b \in B\}$.

For example, a cartesian product of sets $\{3,4\}$ and $\{1,2,3\}$ is the set of pairs $\{(3,1),(3,2),(3,3),(4,1),(4,2)$ Note that the pair $(4,3)$ is in the set, but the pair $(3,4)$ is not, because 4 is not an element of $\{1,2,3\}$.

Proof that cartesian product $\mathbb{N} \times \mathbb{N}$ is countable: exactly the rational numbers.
Definition 1. A relation on n variables $R\left(x_{1}, \ldots, x_{n}\right)$ is a subset of the Cartesian product of domains of x_{1}, \ldots, x_{n}.

A predicate is true if the corresponding tuple of values is in the relation. Example: Parent (x, y).
A function is a special kind of relation that has exactly value of x_{n} for any tuple of values of $x_{1} \ldots x_{n-1}$. Usually we write $f\left(x_{1} \ldots x_{n-1}\right)=x_{n}$ to mean that R is a function and $R\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)$ holds.

So just as we defined numbers using sets, we now defined functins and relations on numbers (and not just numbers: the variables can be anything).

Example 1. $f(x)=\operatorname{Mother}(x)$ is a function, so is $f(x)=x^{2}$, so is $f(x)=x / y$.

Definition 2. We often write functions as $f: X \rightarrow Y$ (read as "function f from X to Y) meaning that the tuples of variables of f come from X, and that the output value of f comes from Y. We call X the domain of f, and $\{y \mid x \in X \wedge f(x)=y\}$ a range of f, or image of X under f. A set Y is called codomain; the range of f is a subset of the codomain,

Domain and range can be different sets: e.g., function counting the number of a 's in a string $f: \Sigma^{*} \rightarrow \mathbb{N}$.

- Identity function: $f(x)=x$. Can be defined for any domain=codomain.
- Constant function: $f(x)=a$,where s does not change when x does. For example, $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(x)=0$.
- Arithmetic functions: logarithmic function $f(x, y)=\log _{x} y$, exponential $f(x, y)=x^{y}$, addition, multiplication, division,subtraction,etc.
- Boolean functions: a function from strings of 0 s and 1 s of length n (denoted $\{0,1\}^{n}$) to $\{0,1\}$.

A function is defined by a formula if there is a formula which is true exactly on tuples of inputs + output of the function. E.g., a function $F: \mathbb{N} \rightarrow \mathbb{N} f(x)=x+1$ can be defined by $y>x \wedge \forall z(z \leq x \vee z \geq y)$. Sometimes a function is not well defined on a certain domain: e.g., \sqrt{x} is not well-defined when both the domain and the range are natural numbers.

Definition 3. Let $f: X \rightarrow Y$ be a function. Then f is one-to-one (or injective) iff $\forall x, y \in$ $X(f(x)=f(y) \rightarrow x=y)$. A function is onto (or surjective) if $\forall y \in Y \exists x \in X(f(x)=y)$. A function is bijective if it is both one-to-one and onto.

To prove that two sets are the same size, give a bijection (or give two functions, one a surjection and one an injection).

To prove that a function is one-to-one show that $f(x)=f(y) \rightarrow x=y$.
Example 2. For example, $f(x)=4 x+1, f(x)=f(y)$ so $4 \mathrm{x}+1=4 \mathrm{y}+1$ so $x=y$. On the other hand, $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(n)=n^{2}$ is not one-to-one: as a counterexample take $x=-1$ and $y=1$. Then $x \neq y$, but $x^{2}=y^{2}$.

To prove that a function is onto, show that every element has a preeimage. To prove that it is not onto, show that there is an element in the codomain such that nothing maps into it.

Example 3. Consider again $f(x)=4 x+1$ over real numbers. There it is onto. Now consider it over integers. It is not onto integers.

