CS 2742 (Logic in Computer Science) - Fall 2008 Lecture 17

Antonina Kolokolova

November 10, 2008

Definition 1. A Boolean algebra is a set B together with two operations, generally denoted + and \cdot, such taht for all a and b in B both $a+b$ and $a \cdot b$ are in B and the following properties hold:

- Commutative laws: $a+b=b+a$ and $a \cdot b=b \cdot a$.
- Associative laws: $(a+b)+c=a+(b+c)$ and $(a \cdot b) \cdot c=a \cdot(b \cdot c)$.
- Distributive laws: $(a+b) \cdot c=a \cdot c+b \cdot c$ and $a \cdot b+c=(a+b) \cdot(a+c)$ (recall that the second one does not hold for the normal arithmetic + and $\cdot)$.
- Identity laws: $a+0=a$ and $a \cdot 1=a$
- Complement laws: for each a there exists an element called negation of a and denoted \bar{a} such that $a+\bar{a}=1, a \cdot \bar{a}=0$.

Proofs in Boolean algebra:
Example 1 (Idempotent identity). Show that $a+a=a$.

$$
\begin{aligned}
a & =a+0 & & \text { because } 0 \text { is the identity for }+ \\
& =a+(a \cdot \bar{a}) & & \text { by the complement law for } \cdot \\
& =(a+a) \cdot(a+\bar{a}) & & \text { by the distributive law } \\
& =(a+a) \cdot 1 & & \text { by the complement law for }+ \\
& =a+a & & \text { because } 1 \text { is the identity for }+
\end{aligned}
$$

5.1 Power set and diagonalization

A power set of a set A, denoted 2^{A}, is a set of all subsets of A. For example, if $A=\{1,2,3\}$ then $2^{A}=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}\}$.

Let $|A|$ denote the number of elements of A (also called cardinality, especially when talking about infinite sets.) The size of the power set, as notation suggests, is $2|A|$.

Theorem 1. Let A be a finite set. Then the cardinality of 2^{A} is $2^{\mid} A \mid$.

Proof. Suppose A has n elements. Now, every subset S of A can be represented by a binary string of length n, which would have a 1 in the positions corresponding to an element in S, and a 0 in places corresponding to elements not in S. For example, if $A=\{1,2,3\}$ as above, then $S\{1,3\}$ is represented by a string 101 , and \emptyset is represented by a string 000 . Now, the number of binary strings of length n is 2^{n}. Therefore, the number of possible subsets of A (and thus the elements of 2^{A}) is also 2^{n}.

What if A is infinite? Still the size of the powerset (called cardinality in this context) will be larger. The proof is by diagonalization argument.

Halting problem for Java programs. Remember Russell's paradox:
$A=\{x \mid x \notin A\}$.
Let CheckHalt be an algorithm such that CheckHalt(M, x) prints "halts" if M terminates on input x, and "loops" if M does not terminate. Let $\operatorname{Diag}(X)=\neg \operatorname{CheckHalt}(X, X)$. Such a $\operatorname{Diag}(X)$ gives a paradox.

Another way of proving it is using a technique called Diagonalization, due to Cantor. But to present this we need some more definitions first.

