
CS 2742 (Logic in Computer Science) – Fall 2008
Lecture 13

Antonina Kolokolova

October 29, 2009

4.1 Equivalences and normal forms

Recall the formula ∃yParent(x, y) ∧ (∃yParent(z, y)). This was our example of a formula
illustrating the scope of a quantifier: here, the scope of the second y is the parentheses where
it is located, and the scope of the first quantifier is the rest of the formula. When we were
discussing this, we said that a variable could be renamed, to avoid the confusion. But note
that if all variables in a formula have different names, then it is possible to make the scope of
each of them the whole formula. So the formula above is equivalent to ∃y∃uParent(x, y) ∧
Parent(z, u). Note that although we moved ∃u to the front of the formula, we did not
change its order relative to ∃y. Although for quantifiers of the same type the order can be
changed, since it cannot be changed between quantifiers of different types it is good to keep
the order of quantifiers the same as it was in the formula. It is often convenient to convert
formulas into such form with all the quantifiers in front (called “prenex normal form”). It
makes it easier to see the order of quantifiers and perform operations such as negation.

So in a first-order formula we can rename a variable (to a variable name which does not occur
in the subformula where we are making the change, obviously), and move the quantifiers to
the front of the formula. What else are we allowed to do? Just as with propositional
formulas, we are allowed to replace a subformula with another logically equivalent formula
(preserving variable names). For example, if we have a formula ∃x∀y(P (y)∨Q(y))∧¬P (x).
then we cannot rename y to x. However, we can rename y to, say, z. Also, we know from
DeMorgan’s law that P (x)∨Q(x) ⇐⇒ ¬(¬P (x)∧¬Q(x)). By changing the variable to y in
this equivalence, we can substitute the new subformula ¬(¬P (y) ∧ ¬Q(y)) into the original
quantified formula to obtain ∃x∀y¬(¬P (y) ∧ ¬Q(y)) ∧ ¬P (x)

36



4.2 Predicates with finite domains and resolution

Consider the case when domain of a predicate is small (i.e., finite). In this case, it is possible
to represent quantifiers using ∨ and ∧, thus reducing a first-order case to a propositional
case.

Example 1. Suppose that we consider the relation Parent(x, y) on the domain consisting of
5 people: {John,Bob,Mary,George, Alex}. Consider a formula ∀x∃yParent(x, y), saying
now that each one of these 5 people has another of these 5 as a child (which is not possible, for
a domain like that). Or, alternatively, consider a relation ∀x∀y∃zParent(z, x)∧Parent(z, y),
saying that all people in this list are siblings.

Let’s look at the first one of these relation. To save space, I will just write Parent(x, y) as
P (x, y) here.

What does it mean that ∀xA(x) some formula A(x) is true? In the case of A(x) being
∃yP (x, y), it means that A(x) is true for John and Bob and Mary and George and Alex. So
we can write this as

(∃yP (John, y)) ∧ (∃yP (Bob, y)) ∧ (∃yP (Mary, y)) ∧ (∃yP (George, y)) ∧ (∃yP (Alex, y))

Similarly, what does it mean for an existential quantifier to be true? In this case, the formula
is true either for John, or for Bob, or for Mary and so on. So the formula becomes

(P (John, John) ∨ P (John,Bob) ∨ P (John,Mary) ∨ P (John,George) ∨ P (John,Alex))

∧(P (Bob, John) ∨ P (Bob, Bob) ∨ P (Bob, Mary) ∨ P (Bob, George) ∨ P (Bob, Alex))

∧(P (Mary, John) ∨ P (Mary, Bob) ∨ P (Mary, Mary) ∨ P (Mary, George) ∨ P (Mary, Alex))

∧(P (George, John) ∨ P (George, Bob) ∨ P (George, Mary) ∨ P (George, George) ∨ P (George, Alex))

∧(P (Alex, John) ∨ P (Alex, Bob) ∨ P (Alex, Mary) ∨ P (Alex, George) ∨ P (Alex, Alex))

Now, notice that there are no more free variables in predicates. So in effect they are not
predicates anymore, but propositional variables! We can use, say, a variable pm,b to mean
P (Mary, Bob) is true, and same for the rest of the occurrences of P (). Now, we can write the
formula above as a truly propositional formula ((pjj∨pjb∨· · ·∨pja)∧. . ..Note that once we got
this kind of formula, we can apply resolution to check whether it is a tautology/contradiction.

Example 2. For a more natural example consider the following formula ∃y, 0 ≤ y ≤
1 ∀x, 2 ≤ x ≤ 4 (y + 1 < x) Here, we include the description of the domain into the
quantifier. For this example, suppose also that x, y ∈ N . This formula has the same
meaning as ∃y (0 ≤ y ≤ 1) ∧ (∀(2 ≤ x ≤ 4 → y + 1 < x)), but here we want to treat these
restrictions as restrictions of the domain of the quantifiers.

In this case we have two possible values for y, y = 0 and y = 1, and three possible values for
x, 2, 3 and 4. After the same transformation as in the previous example, computing y + 1
for each y, we obtain the following formula:

37



(1 < 2 ∧ 1 < 3 ∧ 1 < 4) ∨ (2 < 2 ∧ 2 < 3 ∧ 2 < 4)

Now, this is a propositional formula where we know the meanings of propositions (here, our
propositions are 1 < 2, 2 < 4 and so on) so we can figure out its truth value. The only
unequality here that is false is 2 < 2, since we took the “strictly greater” relation < here.
This makes the subformula (2 < 2 ∧ 2 < 3 ∧ 2 < 4) false. However, the subformula in the
first set of parentheses is true, therefore the whole formula is true.

When we have many formulas ∨ or ∧ together, it is often convenient to think about it as
just one big ∨ or big ∧ operator over many inputs (we can do this because of the associative
logic identity). For example, the formula above can be written as

∨
0≤y≤1

∧
2≤x≤4 y + 1 < x.

Even more useful this concept becomes when we talk about circuits. In circuits, it is possible
to feed more than two wires into an AND gate, or an OR gate, essentially emulating these
big ∨ and ∧. This is how quantifiers (on finite domains) are represented using circuits.

4.3 Limitations of FO logic

Recall how we were saying that every Boolean function is expressible by a propositional
formula for a given number of variables. Surely, you will say, with predicate logic we can
express everything. But the fact is that some very natural properties cannot be expressed
in predicate logic, because here the notion of “expressing” is quite different. A propositional
formula only talks about finitely many things, and if worst comes to worst it can just list all
the cases, describing a truth table. So when we talk about “expressing” boolean functions
we do not talk about one formula for one function, we talk about a different formula for
every number of inputs to the boolean function, a different formula for every truth table.
Whereas in the predicate logic case we have the ability to talk about infinitely many things
at once. And it is not possible to list all infinitely many cases of relationships among, say,
natural numbers, at least not with a finite-length formula.

Here is an example of a very natural property which is not expressible in first-order logic.

Example 3 (Transitivity in databases). Consider an airline database such as the one that
travel agents use to find and book flights. This database could contain a relation Sched-
uledFlight(number, departure city,arrival city) which is true when flight number goes from
departure city to arrival city. For simplicity, let us ignore the number for now, and just
look at the relation Flight(dep city,arr city), true on pairs of cities such that there is a flight
between them (exercise: see how you can write the relation Flight(...,...) using the relation
ScheduledFlight(...,...,...)). In real life, the answer of such query would be a list of flight
numbers, rather than a simple true/false.

Suppose you want to go from St. John’s (code YYT) to Bangalore, India (code BLR). Asking
the query Flight(Y Y T, BLR) is not going to help, because you know that there are only

38



about 5 cities outside of Newfoundland that you can reach flying from St. John’s airport,
and Bangalore is definitely not one of them. So you need to change planes. The next attempt
is to ask the query ∃y F light(Y Y T, y) ∧ Flight(y, BLR). This will be true if there is a city
that has direct flights from St. John’s and direct flights to Bangalore. So in fact you want
to ask the database “give me a way to fly from St. John’s to Bangalore, and I don’t care
how many times I need to change planes”. Well, this kind of query, called “transitivity”, is
not expressible in first-order logic. For any fixed number of plane changes you can, indeed,
ask if there is a way to get from YYT to BLR, however you always need to set a limit on the
number of intermediate locations. For example, to ask if there is a way to get to Bangalore
via 5 intermediate cities you would write

∃y1∃y2∃y3∃y4∃y5Flight(Y Y T, y1) ∧ Flight(y1, y2)∧
Flight(y2, y3) ∧ Flight(y3, y4) ∧ Flight(y4, y5) ∧ Flight(y5, BLR)

Some databases do have special ways of computing this kind of relation, but it is an addition
to the language of first-order logic and can be quite computationally intensive, especially in
large databases. More often, it seems, the database system just tries the first several queries,
until they reach a number of intermediate steps that seems too large for them (you might
have noticed that you pretty much never see a route with more than 3 intermediate cities,
and sometimes get an answer “there is no way”).

You can also ask a combination of such queries: for example, Flight(Y Y T, BLR)∨∃y F light(Y Y T, y)∧
Flight(y, BLR) is true on the database when there is either a direct flight from YYT to BLR,
or a flight with one intermediate city.

5 Set theory

5.1 Empty set and quantifiers

Recall that we talked about “sets” (that is, collections of elements) that were domains of
our quantifiers. A set is defined by the elements it contains: remember that x ∈ S meant
that an element x is in S, x /∈ S meant that x is not a member of set S.

There is a special set, though, called “empty set” (denoted ∅) which is the set that contains
no elements. That is, ∀x x /∈ ∅ is the definition (here, the domain of the quantifier is
everything).

What happens when the empty set is our domain? Then if our quantifier is the universal
quantifier, then the formula is always true! For example, ∀xParent(x, x) is true, as well as
∀x∀yParent(x, y) ∧ Parent(y, x). Why would such a strange thing happen?

Remember that one way to talk about domains is to put an implication that if the x is in

39



the domain, then the formula under quantifier is true. That is, ∀xA(x) can be stated as
∀x(x ∈ domain → A(x)). But note that if domain = ∅ then the left side of the implication
is always false. Therefore, the whole formula is true: for every x, since x ∈ domain is false,
x ∈ domain → A(x) is true. Note that from here you can also see that when an existential
quantifier has empty domain, the formula is always false. One way of explaining it is to say
that an existential quantifier is a negated universal quantifier, so if the universal is always
true, then the existential is always false.

So what happens with big ∨ and big ∧? Remember the logic identities T ∧ p ⇐⇒ p,
F ∨ p ⇐⇒ p? You can see this as saying that an “empty ∧” is true, and an “empty ∨” is
false. This agrees exactly with the fact that a formula with ∀ converted to ∧ and ∃ converted
to ∨ will be true when there are no predicates on ∧ and false when there are no predicates
on ∨.

Puzzle 1. A man walks into a bar and says to the barman: “pour everybody a drink! when
I drink, everyone drinks!”. After he finishes the round, he says again: “pour everybody a
drink! when I drink, everyone drinks!”. The crowd is quite pleased, until he says: “Give me
the bill, I’ll pay. When I pay, everybody pays!”.

What does it have to do with logic, you may ask? Tell me, is there a man such that when
he drinks, everybody drinks?

40


